
ar
X

iv
:1

80
5.

08
99

0v
1 

 [
m

at
h.

N
A

] 
 2

3 
M

ay
 2

01
8

GPU ACCELERATION OF SPLITTING SCHEMES APPLIED TO

DIFFERENTIAL MATRIX EQUATIONS

HERMANN MENA, LENA-MARIA PFURTSCHELLER, AND TONY STILLFJORD

Abstract. We consider differential Lyapunov and Riccati equations, and gen-
eralized versions thereof. Such equations arise in many different areas and are
especially important within the field of optimal control. In order to approxi-
mate their solution, one may use several different kinds of numerical methods.

Of these, splitting schemes are often a very competitive choice. In this arti-
cle, we investigate the use of graphical processing units (GPUs) to parallelize
such schemes and thereby further increase their effectiveness. According to
our numerical experiments, speed-ups of several orders of magnitude are often
observed for sufficiently large matrices. We also provide a comparison between
different splitting strategies, demonstrating that splitting the equations into a
moderate number of subproblems is generally optimal.

1. Introduction

We are interested in differential matrix equations of Lyapunov or Riccati type,
or generalized versions of these. They are all of the form

Ṗ = ATP + PA+Q+G(P ),

where A ∈ R
n×n and Q ∈ R

n×n are given matrices and G is a matrix-valued
function of P . For differential Lyapunov equations (DLE) we have G(P ) = 0 and
for differential Riccati equations (DRE) we have G(P ) = −PBR−1BTP with two
given matrices B ∈ R

n×m and R ∈ R
m×m. Such equations occur frequently in

many different areas, such as in optimal/robust control, optimal filtering, spectral
factorizations, H∞-control, differential games, etc. [1, 5, 27, 37].

Perhaps the most relevant setting is the linear quadratic regulator (LQR) prob-
lem. There, the aim is to optimize a finite-time cost function of the form

J(u) =

∫ T

0

‖y(t)‖2 + ‖u(t)‖2dt, T ≥ 0,

under the constraints that ẋ = Ax + Bu (state equation) and y = Cx (output
equation, with C ∈ R

p×n). In this case, the solution to the DLE with Q = CTC
gives the observability Gramian of the system, which characterizes the relevant
states x for the input-output mapping u 7→ y. The solution of the DRE, on the
other hand, provides the optimal input that minimizes J , in state feedback form.
In fact, if P solves the DRE with Q = CTC then the optimal input uopt is given
by uopt(t) = −R−1BTP (T − t)x(t).

For the generalized DLE and DRE versions, an additional linear term SPST

appears in G(P ), where S ∈ R
n×n is a given matrix. Such equations also arise in

the LQR setting, when a stochastic perturbation of multiplicative type is included
in the state equation.

Date: May, 22, 2018.
2010 Mathematics Subject Classification 65F30, 65Y05, 65F60.
Keywords:Differential Lyapunov equations, Differential Riccati equations, Large-scale, Split-

ting schemes, GPU acceleration.

1

http://arxiv.org/abs/1805.08990v1


2 H. MENA, L.-M. PFURTSCHELLER, AND T. STILLFJORD

In recent years, a number of numerical methods have been suggested for large-
scale DLEs, DREs and related equations. The classic ones, low-rank versions of
BDF and Rosenbrock schemes [14, 15, 30] are usually outperformed by more mod-
ern methods such as Krylov-based projection schemes [28], peer methods [29] or
splitting schemes [31, 41, 42]. In this paper, we focus on splitting schemes. These
methods lower the computational cost by dividing the problem into simpler sub-
problems such as Ṗ = ATP + PA and Ṗ = Q and then solve these separately, in
sequence. While the splitting of course introduces an additional error, this is gener-
ally compensated by the decreased computational cost and leads to large speed-ups.

The hypothesis to be investigated in this paper is that utilizing a graphical
processing unit (GPU) to parallelize the schemes may further greatly increase the
efficiency. Such speed-ups have already been observed for other related methods for
DREs [9, 10, 11] as well as for their steady-state versions; the algebraic Lyapunov
and Riccati equations [11, 12]. In the just mentioned cases, the basic building
block of the schemes is the computation of the matrix sign function, which requires
the inversion of a large dense matrix. In a splitting scheme, the basic building
block is instead the computation of the action of a matrix exponential on a skinny
matrix. Speed-ups have previously been observed for applications where matrix
exponentials are multiplied by vectors [3, 21], see also [22]. In these works, a speed-
up is generally not observed for “small” matrices (n . 1000), and the speed-up is
of limited size when the matrices are sparse rather than dense. As we are typically
interested in at least medium-sized problems (1000 . n . 10000) we do expect
to see a significant speed-up. Moreover, while we are necessarily considering the
sparse case, we are not simply computing the action of the matrix exponential on
vectors, but on skinny block matrices. This increases the parallelizability of the
problem and makes the sparsity issues noted in e.g. [23, 7, 21] less relevant.

Since the relevant methods are mainly implemented in Matlab, we restrict our-
selves to utilizing its built-in GPU support [38] via NVIDIA’s CUDA [34] parallel
programming interface. We do not claim that this approach leads to the best pos-
sible performance. The point is rather to demonstrate that quite simple changes to
the implementations of the splitting schemes may lead to much better performance,
when one has access to a GPU. Our results already show a remarkable improvement
in efficiency, and this can only increase with further optimisations and the use of
more advanced techniques tailored to specific problems.

In addition, we provide comparisons between different splitting strategies for
DLEs and DREs. We particularly address questions that naturally arise while
solving these equations by splitting methods. E.g., should the DLE be split at
all? Should the DRE be split into two or three subproblems? Our results in this
direction demonstrate that it is usually beneficial to use the smallest number of
splits. However, when Q is sufficiently small it is beneficial to split it too, since the
extra error is similarly small and the subproblems Ṗ = ATP + PA and Ṗ = Q are
very cheap to compute compared to Ṗ = ATP + PA+Q.

An outline of the article is as follows. In Section 2 we review the idea behind
splitting schemes and apply them to all the mentioned equation types. Then we
consider implementation details and the simple changes necessary for GPU uti-
lization in Section 3. We present the results of several numerical experiments in
Section 4, and summarize our conclusions in Section 5.

2. Splitting schemes

Splitting schemes are numerical methods that are applicable to differential equa-
tions that have a natural decomposition into two (or more) parts;

Ṗ = F (P ) = F1(P ) + F2(P ), P (0) = P0.



GPU ACCELERATION OF SPLITTING SCHEMES APPLIED TO DMES 3

With “natural decomposition” we mean that the subproblems

Ṗ = F1(P ) and Ṗ = F2(P )

are either simpler or cheaper to solve than the full problem Ṗ = F (P ). This is the
case in many problems, with the most common example being reaction-diffusion
equations ẋ = ∆x+ f(x). In this case, there are highly optimized methods for the
pure diffusion problem ẋ = ∆x, while the subproblem ẋ = f(x) often turns into a
local rather than global problem — i.e. it is enough to solve ẋi = f(xi) for every

discretization point xi. In the following, we denote the solution to Ṗ = Fk(P ),
P (0) = P0, by P (t) =: Tk(t)P0.

The most basic and commonly used (exponential) splitting schemes are the Lie
and Strang splittings. They are given by the time stepping operators

LhP0 = T2 (h) T1 (h)P0 and ShP0 = T1
(

h

2

)

T2 (h) T1
(

h

2

)

P0,

respectively, where h is the time step. Of course, the roles of T1 and T2 might be
interchanged. The schemes are then defined by

PL
k+1 = LhP

L
k and PS

k+1 = ShP
S
k ,

with PL
0 = PS

0 = P0. Here, P
L
k and PS

k both approximate P (kh). The Lie splitting
is first-order accurate while Strang splitting is second-order accurate under certain
conditions on F1, F2 and F , see e.g. [26]. For simplicity, we restrict ourselves to
the Strang splitting scheme in this paper, but one might also consider higher-order
schemes [20, 24, 42], or schemes where the subproblems are not solved exactly, see
e.g. [26, 25].

Clearly, one might continue the splitting procedure if the system is naturally
decomposed into more than two parts. If

Ṗ = F1(P ) + F2(P ) + F3(P )

then applying the Lie and Strang splitting schemes twice leads to the schemes

L̃hP0 = T3 (h) T2 (h) T1 (h)P0 and

S̃hP0 = T1
(

h

2

)

T2
(

h

2

)

T3 (h) T2
(

h

2

)

T1
(

h

2

)

P0.

Again, the roles of T1, T2 and T3 might be interchanged. Different compositions
with a possibly higher number of operators might also be considered, in order to
optimize the structure of the error. We refer to [4] but do not consider such methods
here.

Like essentially every other method for solving differential matrix equations, the
splitting schemes need to make use of low-rank structure in order to be competitive
in the large-scale setting. This means that we can expect the singular values of the
symmetric, positive semi-definite solution P to decay rapidly, see e.g. [2, 6, 8, 36, 40],
and thus we can factorize P ≈ LDLT for L ∈ R

n×r, D ∈ R
r×r with r ≪ n. By

formulating the methods to only operate on L and D and never explicitly form
the product LDLT , we drastically lower both the memory requirements and the
computational cost.

In the following, we outline different splitting strategies for all the matrix equa-
tions mentioned so far, and also review how to low-rank-factorize each arising sub-
problem.



4 H. MENA, L.-M. PFURTSCHELLER, AND T. STILLFJORD

2.1. Differential Lyapunov equations. As a first example, we consider the dif-
ferential Lyapunov equation

Ṗ = ATP + PA+Q, P (0) = P0,(1)

Here we may choose F1 as the linear part and F2 as the constant term, i.e.

F1(P ) = ATP + PA and F2(P ) = Q.

These subproblems can be solved explicitly and the solutions at time h are given
by

T1(h)P0 = ehA
T

P0e
hA,

T2(h)P0 = P0 + hQ.

It is easily seen that if we have the LDLT-factorizations P0 = LDLT and Q =
LQDQL

T

Q, then we can also factorize these solutions as

T1(h)P0 =
(

ehA
T

L
)

D
(

ehA
T

L
)T

,(2)

T2(h)P0 =
[

L LQ

]

[

D 0
0 hDQ

]

[

L LQ

]T

.(3)

We could also note that the exact solution to the full problem is given by

(4) P (t) = etA
T

P0e
tA +

∫ t

0

esA
T

QesAds, t ∈ [0, T ]

where the integral term may be approximated by high-order quadrature as in [41].
While this does not result in a splitting scheme of the form described above, we
still include it in our experiments due to its similarity and efficiency.

2.2. Differential Riccati equations. A second example is given by the differen-
tial Riccati equation:

Ṗ = ATP + PA+Q− PBR−1BTP, P (0) = P0.(5)

In this case, we can either split in three terms;

F1(P ) = ATP + PA, F2(P ) = Q, and F3(P ) = PBR−1BTP,

or two terms1;

F12(P ) = ATP + PA+Q, and F3(P ) = PBR−1BTP.

The latter was advocated in [41, 42] because (experimentally) the error constant
in the three-term splitting is much larger. However, the three-term splitting does
not need to approximate the integral term, and thus the larger error might be
compensated by a lower computational cost.

In either case, we note that the solution at time h to the problem Ṗ = F3(P ),
P (0) = P0, is given explicitly by

(6) T3(h)P0 = (I + hP0BR−1BT)−1P0.

A low-rank factorization is given by

T3(h)LDLT = L(I + hDLTBR−1BTL)−1DLT.

Note that the I in this equation is not the same identity matrix as in the previous
equation, because the DLT-part of P0 has moved. We thus only need to solve a
small linear equation system.

1We deliberately use F12 and F3 here rather than F1 and F2, in order to not change the
meaning of the previously defined F1 and F2. The two-term splitting schemes are obviously still
well-defined after substituting the proper numbers.



GPU ACCELERATION OF SPLITTING SCHEMES APPLIED TO DMES 5

2.3. Generalized Lyapunov equations. We further consider a generalized Lya-
punov equation of the form

Ṗ = ATP + PA+Q+ SPST, P (0) = P0.(7)

We again split the equation and obtain three subproblems defined by2

F1(P ) = ATP + PA, F2(P ) = Q, and F4(P ) = SPST.

The first two subproblems are handled as before, whereas we approximate T4(h)(P )
by the midpoint rule, analogously to what is done in [19]:

T4(h)P0 ≈ P0 + hS
(

P0 +
h

2
SP0S

T

)

ST.

Given P0 = L0D0L
T

0 , we get T4(h)P0 ≈ LDLT, where

L =

[

L0,
√
hSL0,

h√
2
S2L

]

, and D = blkdiag(D0, D0, D0),

where blkdiag is the block diagonal operator that puts its block arguments on the
diagonal of an otherwise zero matrix.

We note that when using a second-order splitting scheme like the Strang splitting,
it is necessary to use a second-order method like the midpoint rule in order to
preserve the overall convergence order. If we use instead a first-order scheme like
the Lie splitting, it is sufficient to approximate Ṗ = F4(P ) by e.g. the explicit Euler
method.

2.4. Generalized Riccati equations. Moreover, we study a generalized Riccati
equation given by

Ṗ = ATP + PA+Q+ SPST − PBR−1BTP, P (0) = P0,(8)

and split this equation into three subproblems of the form

F12(P ) = ATP + PA+Q, F3(P ) = −PBR−1BTP, and F4(P ) = SPST.

These subproblems are solved similarly as in the previous subsections. We do not
consider a four term splitting since the extra error due to the splitting would become
prohibitively large.

3. GPU considerations

In this section we briefly describe the GPU implementations of the Strang split-
ting applied to the differential matrix equations discussed in Section 2. All the
algorithms are implemented in Matlab 2017a R© using the Parallel Computing Tool-
box. As there exist many built-in GPU-based functions, implementing algorithms
on the GPU is quite user-friendly in recent releases of Matlab, see e.g. [38]. In or-
der to avoid unnecessary communication between the CPU and the GPU, we first
move all the data to the GPU, solve the equations on the GPU and transfer the re-
sults back to the CPU. These two steps are accomplished by the Matlab commands
gpuArray and gather, respectively.

2For the same reason as in the previous note, we use F4 rather than F3 here.



6 H. MENA, L.-M. PFURTSCHELLER, AND T. STILLFJORD

3.1. Action of the matrix exponential. In all the considered equations, the
most demanding part is to compute the action of the matrix exponential in (2) effi-
ciently. In [17, 18] the authors considered an algorithm based on Leja interpolation
and showed that applying the algorithm to a matrix derived from a spatial dis-
cretization of a differential operator is very efficient. We will thus use this method
to compute ehAL for different skinny matrices L. In the following, we denote this
algorithm by expleja.

We briefly sketch the implementation of the method and refer to [17, 18] for de-
tails. As a first step, the spectrum of the matrix A is estimated by the Gershgorin
disk theorem. After moving A to the GPU by use of gpuArray, we take advan-
tage of GPU-based built-in functions like diag, sum and abs and implement this
algorithm equivalently to the CPU version. We proceed similarly with the com-
putation of the parameters for the exponential interpolation, see [17]. The most
time consuming part of the algorithm is the Newton interpolation that one has to
perform at every Leja point. Here we profit from the efficient matrix-vector and
matrix-matrix multiplication for large-scale matrices on the GPU, and the property
that the multiplication of two GPU arrays is again stored on the GPU. Thus, the
GPU implementation pays off particularly in this section of the code and we never
have to copy the matrices from the GPU to the CPU and vice versa.

3.2. Computing the matrix equations on the GPU. In this subsection we will
explain the methods used to solve the differential matrix equations on the GPU.
First, we consider the DLE solved by the Strang splitting approach. We assume that
the matrices are stored on the CPU, hence as a first step we copy these matrices to
the GPU. Then, we can apply the steps from the CPU implementation as described
in [42], computing the actions of the matrix exponential by Leja interpolation. A
detailed description is given in Algorithm 3.1.

Algorithm 3.1 Solving DLE by Strang splitting on the GPU

1: Given: A, Q, P0, T , Nt, h = T
Nt

.

2: Compute LDLT-decompositions of Q = LQDQL
T

Q and P0 = LDLT and copy
matrices to GPU using gpuArray.

3: Compute parameters param for Leja interpolation.
4: for k = 1 : Nt do

5: L = expleja(h/2, A, L, param)
6: L = [L,LQ]
7: D = blkdiag(D,hDQ);
8: [L,D] = column compression(L,D);
9: L = expleja(h/2, A, L, param)

10: end for

11: P = LDLT;
12: P = gather(P ).

On the other hand, as mentioned in Subsection 2.1 it is possible to derive an
explicit form of the solution of the DLE given by (4). Hence, following [42] we com-
pute an approximation of the solution as given in Algorithm 3.2 using a quadrature
rule to estimate the integral.

We note that in both Algorithm 3.1 and Algorithm 3.2 there is a so-called col-
umn compression step. This refers to the procedure of discarding (almost) linearly
dependent columns from L, and serves to keep the number of columns in the approx-
imations small. Without such a step, each iteration of Algorithm 3.1 (for example)
would add the columns in LQ to L, while the rank would likely stay similar. The



GPU ACCELERATION OF SPLITTING SCHEMES APPLIED TO DMES 7

Algorithm 3.2 Solving DLE by Quadrature Rule on the GPU

1: Given: A, Q, P0, T , Nt, h = T
Nt

.
2: Repeat Steps 2 and 3 from Algorithm 3.1.
3: Approximate integral:

• Compute n nodes sk and weights wk of quadrature formula;
• LI = [expleja(s1, A, LQ), . . . expleja(sn, A, LQ)];
• DI = blkdiag(w1DQ, . . . , wnDQ);
• [LI , DI ] = column compression(LI , DI).

4: for k = 1, . . . , Nt do

5: L = [expleja(h,A, L, param), LI ]
6: D = blkdiag(D,DI);
7: [L,D] = column compression(L,D);
8: end for

9: P = LDLT .
10: P = gather(P ) .

compression can be performed in various ways, usually by computing either a re-
duced rank-revealing QR factorization or a reduced SVD [30]. Here, we employ
a reduced SVD factorization, followed by a diagonalization of the small resulting
system. It is cheap as long as the rank of the solution stays low, which is the case
in many applications.

As noted in Section 2, we also want to approximate the solutions to DREs and
generalized DLEs and DREs. Therefore, we further have to solve the subproblems
given by F3 and F4. Pseudo-code for these computations, based on the low-rank
factorizations given in Section 2.2–2.3, is shown in Algorithms 3.3 – 3.4.

Algorithm 3.3 Solving Ṗ = F3(P ) on the GPU

1: Given: B, R−1, h and a low-rank factorization of P = LDLT on the GPU.
2: Compute D = (I + hDLTBR−1L)−1D;
3: P = LDLT.

Algorithm 3.4 Solving Ṗ = F4(P ) on the GPU

1: Given: S, h and a low-rank factorization of P = LDLT on the GPU.
2: Compute L = [L,

√
hSL, h/

√
2S2L];

3: Compute D = blkdiag(D,D,D);
4: [L,D] = column compression(L,D);
5: P = LDLT.

We use three approaches to split the DRE: First, we apply Algorithm 3.2 to solve
the Lyapunov part of the equation and compute T3 by Algorithm 3.3, forming

T12
(

h

2

)

T3 (h) T12
(

h

2

)

P0.

Further, we consider the three-term splitting

T1
(

h

2

)

T2
(

h

2

)

T3 (h) T2
(

h

2

)

T1
(

h

2

)

P0,



8 H. MENA, L.-M. PFURTSCHELLER, AND T. STILLFJORD

where we compute the two terms T1(h)P0 and T2(h)P0 as in Algorithm 3.1. Finally
we reverse the order of the three-term splitting

T1
(

h

2

)

T3
(

h

2

)

T2 (h) T3
(

h

2

)

T1
(

h

2

)

P0.

Due to the additional splitting term, further errors are introduced, but since the
integral does not have to be computed the three-term splitting codes are less com-
putationally demanding.

The generalized DLE can be solved by the same three approaches. Using Algo-
rithm 3.4, T3 is replaced by T4 in the previous three formulas. Finally, we apply a
three-term Strang splitting to the generalized DRE, given by

T12
(

h

2

)

T3
(

h

2

)

T4 (h) T3
(

h

2

)

T12
(

h

2

)

P0

is applied.

4. Numerical experiments

The aim of this section is to show the different splitting strategies applied to the
matrix equations, using the algorithms described in the previous section. We will
first show the accuracy of the splitting schemes on a small-scale example, where we
can compute an accurate reference solution by a Matlab built-in solver. Then, we
show the speed-up of the code of the GPU implementation in comparison to the
CPU implementation and compare the efficiencies of the various methods. Finally,
we consider two real-world medium- to large-scale examples for DLE and DRE, re-
spectively, and demonstrate that GPU acceleration is similarly advantageous there.

4.1. Small-scale accuracy verification. We show the results of the algorithms
on a small example. Consider the Laplacian on the unit square with homoge-
neous Dirichlet boundary conditions. By discretizing it using central second-order
finite differences with n grid points in each space dimension, we acquire a ma-

trix A ∈ R
n2×n2

. We let Q and P0 be randomly chosen matrices of rank 2 and
rank 5, respectively. The tolerance for both the column-compression and the Leja
interpolation were set to 10−16.

Figure 1 shows an order plot for the Strang splitting applied to the DLE (1).
The reference solution is computed by the Matlab routine ode15s with relative
tolerance 2.22 · 10−14 and absolute tolerance 10−20. We take as final time T = 1

2

and n = 5.

step size
10-3 10-2 10-1

re
la

tiv
e 

er
ro

r

10-4

10-2

100
F

1
F

2
 GPU

slope 2

Figure 1. Relative error of the Strang splitting scheme applied
to the differential Lyapunov equation.

Next, we apply the Strang splitting to the DRE with A, Q and P0 as defined
previously, B as a randomly chosen matrix of size n2 × 1 and either R−1 = 1 or



GPU ACCELERATION OF SPLITTING SCHEMES APPLIED TO DMES 9

R−1 = 10−3, see Figure 2. The DRE is solved by the three approaches introduced
in the previous section. In the following, we will denote these by “2 term”, “3 term
F1F2F3” and “3 term F1F3F2”. We see from Figure 2 that the three-term splitting

step size
10-3 10-2 10-1

re
la

tiv
e 

er
ro

r

10-4

10-2

100

2 term GPU
3 term F

1
F

2
F

3
 GPU

3 term F
1
F

3
F

2
 GPU

slope 2

step size
10-3 10-2 10-1

re
la

tiv
e 

er
ro

r

10-5

100

2 term GPU
3 term F

1
F

2
F

3
 GPU

3 term F
1
F

3
F

2
 GPU

slope 2

Figure 2. Relative error of the different splitting schemes applied
to DRE with R−1 = 1 (left) and R−1 = 10−3 (right).

F1F3F2 is less accurate, whereas the errors of the two remaining splitting schemes
behave similarly. Thus, the error due to splitting away the part F3 is more severe
than splitting F1 and F2. However, using R−1 = 10−3 leads to a different result.
The three-term splittings now yield roughly equally large errors, but the two-term
splitting is about 10 times more accurate than the other schemes. Here we clearly
observe the additional error introduced by the third splitting term.

Finally, we consider for the generalized matrix equations an example introduced
in [13], where the matrix A denotes again the discretized 2D Laplacian on the unit
square with homogeneous Dirichlet boundary conditions on two edges. On the third
edge, we use the fixed boundary condition given by x = u, and on the final edge
a Robin boundary condition n∇x = 0.5(0.5 + dW )x is applied. This leads to a

matrix B ∈ R
n2×1 and a matrix S ∈ R

n2×n2

. The matrix Q = CCT is defined by
letting C = 1

n2 (1, . . . , 1) be the matrix representation of the mean. We then solve
the generalized Lyapunov equation (7) and show the corresponding error plot in
Figure 3 (left). Moreover, we take R = 1 and compute also the relative error of the
solution of the generalized Riccati equation, see Figure 3 (right).

step size
10-3 10-2 10-1

re
la

tiv
e 

er
ro

r

10-6

10-4

10-2

100

2 term GPU
3 term F

1
F

2
F

4
 GPU

3 term F
1
F

4
F

2
 GPU

slope 2

step size
10-3 10-2 10-1

re
la

tiv
e 

er
ro

r

10-4

10-2

3 term GPU
slope 2

Figure 3. Relative errors of the different splitting schemes applied
to the generalized DLE (left) and the generalized DRE (right).

We again see that the two-term splitting of the generalized DLE is approximately
10 times more accurate than the other two splitting schemes. As in all previous
examples, we observe that the error of the generalized DRE behaves as expected,
i.e. it converges with order 2 and remains small for all step sizes.



10 H. MENA, L.-M. PFURTSCHELLER, AND T. STILLFJORD

4.2. GPU speed-up. We compare the computational costs of the GPU based
algorithm described above running on a Tesla K80 with 2× 12 GB RAM, with the
algorithm which operates only on the CPU (Intel Xeon E5-2630). We compute the
solution until T = 1

2
with step size h = 0.005 for different sizes of the matrix A and

repeat the calculation 50 times to get an accurate result. We build the matrices
as described in Subsection 4.1. All of the experiments are performed on Matlab
on the same platform. In order to have a fair comparison between the different
implementations, we run the Matlab codes on a single core by using the command
-singleCompThread. Moreover, we deactivate the Java Virtual Machine by -nojvm.
The computing time of the CPU algorithm is estimated by the command tic -

toc. For the GPU algorithm we use the wait function with a GPUDevice object as
input and measure the time by tic - toc and wait.

102 103 104

size of matrix A

100

102

104

tim
e 

in
 s

ec
on

ds

1 term CPU
1 term GPU
F1F2 CPU

F1F2 GPU

102 103 104

size of matrix A

100

102

104

tim
e 

in
 s

ec
on

ds

2 term CPU
2 term GPU
F1F2F3 CPU

F1F2F3 GPU

F1F3F2 CPU

F1F3F2 GPU

Figure 4. Computational costs of the algorithms for the DLE
(left) and DRE (right) are given in a log-log plot for different sizes
of the matrix A.

n = 5 n = 25 n = 50 n = 75 n = 100

1 term CPU 1.144 · 10−1 3.232 · 100 1.769 · 102 2.185 · 103 1.057 · 104
1 term GPU 8.280 · 10−1 1.817 · 100 5.235 · 100 1.634 · 101 3.209 · 101
F1F2 CPU 8.360 · 10−2 2.020 · 100 1.274 · 102 1.745 · 103 8.135 · 103
F1F2 GPU 8.298 · 10−1 1.638 · 100 4.034 · 100 1.453 · 101 2.895 · 101

Table 1. Time measurements for DLE for different matrix sizes.

n = 5 n = 25 n = 50 n = 75 n = 100

2 term CPU 1.731 · 10−1 3.424 · 100 1.766 · 102 2.261 · 103 1.100 · 104
2 term GPU 1.902 · 100 3.446 · 100 7.720 · 100 1.659 · 101 2.875 · 101
F1F2F3 CPU 1.233 · 10−1 2.176 · 100 1.401 · 102 1.725 · 103 8.174 · 103
F1F2F3 GPU 2.055 · 100 3.252 · 100 6.577 · 100 1.321 · 101 2.585 · 101
F1F3F2 CPU 1.096 · 10−1 2.227 · 100 1.436 · 102 1.773 · 103 7.755 · 103
F1F3F2 GPU 1.308 · 100 2.332 · 100 5.293 · 100 1.171 · 101 2.509 · 101

Table 2. Time measurements for DRE for different matrix sizes.

In Figure 4 (left) the differential Lyapunov equation is solved with the splitting
scheme as described in Section 2.1, see also Algorithm 3.1, and by the non-splitting



GPU ACCELERATION OF SPLITTING SCHEMES APPLIED TO DMES 11

scheme, where we compute the integral by a high-order Gauss quadrature rule as
in Algorithm 3.2. The computing time is given as a function of the size of the
matrix A. We observe that for small matrices the CPU implementation is less time
consuming than the GPU implementation. However, if the size of the problem
exceeds 103× 103, it pays off to use the GPU implementation. We observe a speed-
up of over a factor 280 for matrices of size 104×104, for both splitting schemes. We
further note that the time complexity of the splitting scheme is comparable to the
non-splitting part. A similar behaviour can be seen in Figure 4 (right), where we
plot the measured time of the splitting schemes of the DRE. Again, a major speed-
up of the implementation on the GPU is detected for these medium-scale problems.
(For matrices of size 104×104 the GPU implementation is approximately 300 times
faster). We expect an even larger performance gain for truly large-scale problems.

We see no difference between the two three-term splitting schemes regarding time
measurements, but the two-term splitting is slightly slower (as expected). The lack
of speed is often more than compensated by a higher accuracy, however, as shown
in the efficiency plot in Figure 5. This plots the relative error against the required
computation times, and thus the further left and down in the plot, the “better”.
We observe that the three-term schemes are most efficient for all error levels when
R = 1, while the two-term splitting is more efficient for small error levels when
R = 10−3. This makes sense, as the former case means that Q is relatively small
and splitting it away therefore yields a small splitting error. In the latter case,
Q is relatively big, and should not be split. (Because we are considering a very
small-scale example here, the CPU versions of the code outperform the GPU in all
cases.)

10-2 100

time in seconds

10-3

10-2

10-1

100

re
la

tiv
e 

er
ro

r

2 term CPU
2 term GPU
F1F2F3 CPU

F1F2F3 GPU

F1F3F2 CPU

F1F3F2 GPU

10-2 100

time in seconds

10-8

10-6

10-4

10-2

100

re
la

tiv
e 

er
ro

r

2 term CPU
2 term GPU

F1F2F3 CPU

F1F2F3 GPU

F1F3F2 CPU

F1F3F2 GPU

Figure 5. Efficiency of the splitting algorithms for the DRE for
n = 5 and R = 1 (left) or R−1 = 10−3 (right).

The GPU-based codes also exhibit better performance for the generalized matrix
equations, see Figure 6. We consider here a two-term splitting of the generalized
DLE as well as two different three-term splittings, and compare the computational
costs of these schemes as well as the difference between CPU and GPU implemen-
tation. We use the matrices for the equations that were introduced in the previous
subsection. As mentioned in Section 2, we employ a three-term splitting for the
generalized DRE. We do not consider a four-term splitting here, since the error
constants can be expected to be prohibitively large.

4.3. Real-world example: Simulation of El Niño. As a second example for
DLEs, we consider the weather phenomenon El Niño. This is characterized by an



12 H. MENA, L.-M. PFURTSCHELLER, AND T. STILLFJORD

102 103 104

size of matrix A

100

102

104

tim
e 

in
 s

ec
on

ds

2 term CPU
2 term GPU
F1F2F4 CPU

F1F2F4 GPU

F1F4F2 CPU

F1F4F2 GPU

102 103 104

size of matrix A

100

102

104

tim
e 

in
 s

ec
on

ds

3 term CPU
3 term GPU

Figure 6. Computational costs of the algorithm for the gener-
alized DLE (left) and the generalized DRE (right) are given in a
log-log plot for different sizes of the matrix A.

n = 5 n = 25 n = 50 n = 75 n = 100

2 term CPU 1.893 · 10−1 4.028 · 100 1.846 · 102 2.283 · 103 1.060 · 104
2 term GPU 2.008 · 100 3.826 · 100 8.573 · 100 1.604 · 101 2.928 · 101
F1F2F4 CPU 1.527 · 10−1 3.411 · 100 1.676 · 102 2.029 · 103 9.104 · 103
F1F2F4 GPU 2.018 · 100 3.596 · 100 7.669 · 100 1.603 · 101 2.262 · 101
F1F4F2 CPU 1.642 · 10−1 3.762 · 100 1.679 · 102 2.074 · 103 9.239 · 103
F1F4F2 GPU 1.967 · 100 4.229 · 100 8.375 · 100 1.691 · 101 3.069 · 101

Table 3. Time measurements for DLE for different matrix sizes.

unusual warming of the sea surface temperature in the Indo-Pacific ocean. It can
be modeled by a stochastic advection equation driven by additive noise [35] and its
covariance is given by a DLE of the form

Ṗ (t) = AP (t) + P (t)AT +Q,

see [31, 32] for details. The matrix A arises from a centered finite difference ap-
proximation of the advection operator and Q is the discretized covariance operator
of the random noise. We consider here the different discretization resolutions cor-
responding to n = 624, 1740, 3900, 7800 and 15600, and approximate the solution
either by Algorithm 3.1 or by directly approximating the integral term in (4) as
outlined in section 2.1.

Figure 7 (left) shows the relative error for the splitting schemes for different step
sizes. The reference solution is computed by the non-splitting scheme with a 16
times smaller step size. We show only the results for n = 1740, but the error behaves
similarly for the other problem sizes. We observe the second-order convergence of
the Strang splitting scheme and note that the relative error is small even for larger
step sizes.

Similar to the academic example from the previous section, the time complexities
of the non-splitting scheme and the splitting scheme are comparable, as shown in
Figure 7 (right). The problem size where the GPU parallelization starts to pay off
is also similar: at n = 624 the CPU and GPU costs are comparable but at n = 1740
we already observe a speed-up of a factor 6. For the finest resolution, the speed-up
is roughly a factor 100.



GPU ACCELERATION OF SPLITTING SCHEMES APPLIED TO DMES 13

step size
10-2 10-1 100

re
la

tiv
e 

er
ro

r

10-8

10-6

10-4

F
1
F

2
 GPU

slope 2

size of matrix A
103 104

tim
e 

in
 s

ec
on

ds

100

101

102

1 term CPU
1 term GPU

F
1
F

2
 CPU

F
1
F

2
 GPU

Figure 7. The relative error for n = 1740 for the splitting scheme
of the DLE for the El Niño example (left) and the computational
costs for different resolutions (right)

Figure 8 displays the efficiency of the numerical schemes for the El Niño example.
As indicated by Figure 7 (right), the GPU and CPU versions of the 2-term splitting
are roughly as efficient for the smallest problem. The 1-term “splitting” performs
much better, and yields the same error independent of the step size. This happens
because we are essentially computing the exact solution to the problem, and the only
error is the quadrature error arising from the integral approximation. The same
behaviour can also be observed for n = 3900, but here the GPU implementation
clearly outperforms the CPU implementation. The 1-term method is again most
efficient, but we note that the shape of the curves indicates that the 2-term splitting
will become advantageous for either smaller errors or larger problems.

time in seconds
10-1 100

re
la

tiv
e 

er
ro

r

10-10

10-8

10-6
1 term CPU
1 term GPU

F
1
F

2
 CPU

F
1
F

2
 GPU

time in seconds
10-1 100 101

re
la

tiv
e 

er
ro

r

10-8

10-6

1 term CPU
1 term GPU

F
1
F

2
 CPU

F
1
F

2
 GPU

Figure 8. Efficiency of the splitting algorithms for the El Niño
example for n = 624 (left) and n = 3900 (right).

4.4. Real-world example: Steel cooling. As a second example for DREs, we
consider the optimal cooling of steel profiles. This problem has been widely studied
in the literature, for details see [39, 16]. It gives rise to a DRE of the form

MTṖM = ATPM +MTPA+Q−MTPBR−1BTPM.

The matrices M and A are the mass and stiffness matrices resulting from a finite el-
ement discretization of the Laplacian on a non-convex polygonal domain (the steel
profile). Q is chosen as CCT, where C is the discretization of an operator that
measures temperature differences between different points in the domain. Finally,
the matrix B is the discretization of the operator that implements the Neumann



14 H. MENA, L.-M. PFURTSCHELLER, AND T. STILLFJORD

boundary conditions of the Laplacian – this results in a boundary control applica-
tion. Cancelling MT and M leads to the equation

Ṗ = M−TATP + PAM−1 +M−TQM−1 − PBR−1BTP,

which we can treat like outlined in Section 2.2 after replacing A by M−1A and Q
by M−TQM−1.

We note that we would normally never explicitly compute the (generally dense)
matrices involving M−1. In the CPU code, we form and reuse an incomplete LU
decomposition of M to cheaply solve a linear equation system whenever the action
ofM−1 orM−T is required. In the GPU code, the issue is unexpectedly complicated
by the fact that Matlab’s CUDA interface does not support solving equation systems
with sparse system matrices and (dense) block right-hand sides. This is supported
in the cuSPARSE library of CUDA itself, so until the Matlab interface is extended
one might theoretically implement this capability by a MEX extension. In order
to demonstrate performance gains by rather easy means, however, we do not do
this. Instead, we compute and store a dense LU factorization. This is clearly
not viable for truly large-scale problems, but problems of up to size n ≈ 3 · 104
are easily possible on our available hardware, and up to n ≈ 5.5 · 104 if AM−1

is explicitly formed at a slightly higher initial cost. Despite the heavy additional
memory requirement, the GPU parallelization leads to a significant speed-up.

An additional issue related to the mass matrix is the original Leja point inter-
polation method for the computation of matrix exponential actions. One of the
main steps of this algorithm computes an estimate of the spectrum of A by the use
of Gershgorin discs. Since computing these require direct access to the elements
in A, it is not directly applicable to AM−1 without explicitly forming the matrix.
To get around this issue and still acquire a cheap estimate, we utilized the results
of [33] which extends the Gershgorin approach to generalized eigenvalue problems.
In our experience, this method overestimates the imaginary part of the spectrum
but otherwise works well. We note that if the GPU code utilizes dense matrices, we
may of course simply compute AM−1 and apply the original Leja point method.
Since we expect to be able to work with sparse matrices in the near future, however,
we follow the approach outlined above in both the CPU and GPU codes.

In the following we consider discretizations corresponding to n = 371, 1357, 5177
and 20209. We take R−1 = I, T = 1

2
and P (0) = 0 and measure the computation

times and relative errors of the different implementations. In Figure 9 (left) the
relative error is shown for the size n = 1357 and different temporal step sizes. The
reference solution is computed by the two-term splitting scheme with a step size
that is 32 times smaller. We see that the two-term splitting performs considerably
better than the other schemes, and the additional error due to a third splitting
term has a huge impact on the approximation. In Figure 9 (right) we show the
measured computation times for the algorithms when 100 time steps are taken.
For the medium scale problem (n = 1357), the GPU and the CPU implementations
have roughly the same computational costs but for the larger scale problems, the
GPU implementation pays off.

We observe nearly no difference in the time measurements of the three differ-
ent splitting schemes. This is likely because the integral term is only computed
once, and the cost of this computation is minor in comparison to the remaining
computations. Since the two-term splitting scheme is much more accurate here,
it is therefore also more efficient, as shown in Figure 10. If only low accuracy is
desired, the three-term splitting schemes are the best choice, but in all other cases
the two-term splitting is most effective.



GPU ACCELERATION OF SPLITTING SCHEMES APPLIED TO DMES 15

step size
10-2 10-1 100 101

re
la

tiv
e 

er
ro

r

10-10

10-5

100

2 term GPU
F

1
F

2
F

3
 GPU

F
1
F

3
F

2
 GPU

slope 2

size of matrix A
103 104

tim
e 

in
 s

ec
on

ds

100

102

104 2 term CPU
2 term GPU

F
1
F

2
F

3
 CPU

F
1
F

2
F

3
 GPU

F
1
F

3
F

2
 CPU

F
1
F

3
F

2
 GPU

Figure 9. Left: Relative error of the steel example with n = 1357.
Right: Computational costs of different splitting schemes applied
to the steel example with n = 371, 1357, 5177 and 20209.

time in seconds
10-1 100 101

re
la

tiv
e 

er
ro

r

10-10

10-5

100

2 term CPU
2 term GPU

F
1
F

2
F

3
 CPU

F
1
F

2
F

3
 GPU

F
1
F

3
F

2
 CPU

F
1
F

3
F

2
 GPU

time in seconds
100 101 102

re
la

tiv
e 

er
ro

r

10-10

10-5

100

2 term CPU
2 term GPU

F
1
F

2
F

3
 CPU

F
1
F

2
F

3
 GPU

F
1
F

3
F

2
 CPU

F
1
F

3
F

2
 GPU

Figure 10. Efficiency of the splitting algorithms for the steel ex-
ample with n = 1357 (left) and n = 5177 (right).

5. Conclusions

We have considered several different splitting schemes based on Leja point in-
terpolation for the computation of matrix exponential actions. Since the matrix
exponentials act on skinny block-matrices (the low-rank factors) rather than only
vectors, we expected that these computations would be highly parallelizable and
that GPU acceleration would therefore be beneficial. The latter was verified by
several numerical experiments. In the considered problems of academical nature,
the GPU code was faster than the pure CPU code by approximately a factor 10
already for matrices of size 2 · 103, and by a factor 103 for matrices of size 104.
The break-even point was around size 650, which is well below what would be con-
sidered large-scale today. In the tested real-world applications, the gains in the
El Niño example were in accordance with the more academic examples. For the
steel example, they were more modest, but still around a factor 10 for the relevant
problem sizes. As there is no difference in the size of the numerical errors, this
clearly shows that GPU acceleration can lead to large gains in efficiency and should
be considered for matrix equations of these type. The efficiency could additionally
be further increased by considering more advanced parallelization techniques. An
obvious such candidate is to investigate the use of single-precision computations
when the desired level of accuracy is low.

We have also presented comparisons of different splitting strategies, mainly in-
vestigating whether one should split away the constant term Q or not, and in which
order the subproblems should be solved. For the latter question, we observe that



16 H. MENA, L.-M. PFURTSCHELLER, AND T. STILLFJORD

the ordering has minimal influence on the error, and we may thus choose the or-
der such that the computational cost is minimized. (E.g., take the most expensive
subproblem as the “middle” term.) For the first question, we expected that it
would not be beneficial to split away Q, since the extra integral term which arises
only has to be approximated once. This was verified by our experiments, except
in the case when Q was relatively small – then, of course, the extra splitting error
is similarly small. We note that these results are for the autonomous case. When
the matrices that define the equations also depend on time, the situation likely
changes as the integral term would need to be recomputed in each step. However,
as the modified methods would still rely on matrix exponential actions as their basic
building blocks, we still expect that GPU acceleration would significantly increase
the efficiency.

Acknowledgements

The authors are grateful to Peter Kandolf for his assistance with the original
expleja code. H. Mena and L.-M. Pfurtscheller were supported by the Austrian
Science Fund (FWF) - project id:P27926.

References

[1] H. Abou-Kandil, G. Freiling, V. Ionescu, and G. Jank, Matrix Riccati equations in control

and systems theory, Birkhäuser, Basel, Switzerland, 2003.
[2] A. C. Antoulas, D. C. Sorensen, and Y. Zhou, On the decay rate of Hankel singular values

and related issues, Syst. Cont. Lett. 46 (2002), no. 5, 323–342.
[3] N. Auer, L. Einkemmer, P. Kandolf, and A. Ostermann, Magnus integrators on multicore

CPUs and GPUs, Comput. Phys. Comm. 228 (2018), 115–122.
[4] Winfried Auzinger, Othmar Koch, and Mechthild Thalhammer, Defect-based local error es-

timators for high-order splitting methods involving three linear operators, Numerical Algo-
rithms 70 (2015), no. 1, 61–91.

[5] T. Başar and P. Bernhard, H∞-optimal control and related minimax design problems, second
ed., Systems & Control: Foundations & Applications, Birkhäuser Boston, Inc., Boston, MA,
1995, A dynamic game approach.

[6] J. Baker, M. Embree, and J. Sabino, Fast singular value decay for Lyapunov solutions

with nonnormal coefficients, arXiv e-prints 1410.8741v1, Cornell University, October 2014,
math.NA.

[7] Nathan Bell and Michael Garland, Efficient sparse matrix-vector multiplication on CUDA,
NVIDIA Technical Report NVR-2008-004, NVIDIA Corporation, December 2008.

[8] P. Benner and T. Breiten, Low rank methods for a class of generalized Lyapunov equations

and related issues, Numerische Mathematik 124 (2013), no. 3, 441–470.
[9] P. Benner, E. Dufrechou, P. Ezzatti, H. Mena, E. S. Quintana-Ort́ı, and A. Remón, Solving

sparse differential Riccati equations on hybrid CPU-GPU platforms, Computational Science
and Its Applications – ICCSA 2017: 17th International Conference, Trieste, Italy, July 3-6,
2017, Proceedings, Part I (Osvaldo Gervasi, Beniamino Murgante, Sanjay Misra, Giuseppe
Borruso, Carmelo M. Torre, Ana Maria A. C. Rocha, David Taniar, Bernady O. Apduhan,
Elena Stankova, and Alfredo Cuzzocrea, eds.), Springer International Publishing, Cham,
2017, pp. 116–132.

[10] P. Benner, P. Ezzatti, H. Mena, E. S. Quintana-Ort́ı, and A. Remón, Solving differential

Riccati equations on multi-GPU platforms, Proceedings of 11th International Conference on
Computational and Mathematical Methods in Science and Engineering (Benidorm), CMMSE
’11, 2011, pp. 178–188.

[11] P. Benner, P. Ezzatti, H. Mena, Quintana-Ort́ı E. S., and A. Remón, Solving matrix equations

on multi-core and many-core architectures, Algorithms 6 (2013), no. 4, 857–870.
[12] P. Benner, Ezzatti P., Quintana-Ort́ı E. S., and A. Remón, Unleashing CPU-GPU ac-

celeration for control theory applications, Euro-Par 2012: Parallel Processing Workshops
- BDMC, CGWS, HeteroPar, HiBB, OMHI, Paraphrase, PROPER, Resilience, UCHPC,
VHPC, Rhodes Islands, Greece, August 27-31, 2012. Revised Selected Papers (Ioannis Cara-
giannis, Michael Alexander, Rosa M. Badia, Mario Cannataro, Alexandru Costan, Marco
Danelutto, Frédéric Desprez, Bettina Krammer, Julio Sahuquillo, Stephen L. Scott, and Josef
Weidendorfer, eds.), Lecture Notes in Comput. Sci., vol. 7640, Springer, 2012, pp. 102–111.



GPU ACCELERATION OF SPLITTING SCHEMES APPLIED TO DMES 17

[13] Peter Benner and Tobias Damm, Lyapunov equations, energy functionals, and model order

reduction of bilinear and stochastic systems, SIAM Journal of Control and Optimization 49

(2011), no. 2, 686–711.
[14] Peter Benner and Hermann Mena, Rosenbrock methods for solving Riccati differential equa-

tions, IEEE Trans. Automat. Control 58 (2013), no. 11, 2950–2956.
[15] , Numerical solution of the infinite-dimensional LQR problem and the associated

Riccati differential equations, J. Numer. Math. 26 (2018), no. 1, 1–20.
[16] Peter Benner and Jens Saak, A semi-discretized heat transfer model for optimal cooling of

steel profiles, Dimension reduction of large-scale systems 45 (2005), 353–356.
[17] Marco Caliari, Peter Kandolf, Alexander Ostermann, and Stefan Rainer, Comparison of

software for computing the action of the matrix exponential, BIT Numerical Mathematics 54
(2014), no. 1, 113–128.

[18] , The Leja method revisited: Backward error analysis for the matrix exponential,
SIAM Journal on Scientific Computing 38 (2016), no. 3, A1639–A1661.

[19] Tobias Damm, Hermann Mena, and Tony Stillfjord, Numerical solution of the finite hori-

zon stochastic linear quadratic control problem, Numerical Linear Algebra with Applications
(2017).

[20] Mariano De Leo, Diego Rial, and Constanza Sánchez de la Vega, High-order time-splitting

methods for irreversible equations, IMA Journal of Numerical Analysis 36 (2016), no. 4,
1842–1866.

[21] L. Einkemmer and A. Ostermann, Exponential integrators on graphic processing units, 2013
International Conference on High Performance Computing Simulation (HPCS), July 2013,
pp. 490–496.

[22] Megan E. Farquhar, Timothy J. Moroney, Qianqian Yang, and Ian W. Turner, GPU acceler-

ated algorithms for computing matrix function vector products with applications to exponen-

tial integrators and fractional diffusion, SIAM Journal on Scientific Computing 38 (2016),
no. 3, C127–C149.

[23] G. Goumas, K. Kourtis, N. Anastopoulos, V. Karakasis, and N. Koziris, Understanding the

performance of sparse matrix-vector multiplication, 16th Euromicro Conference on Parallel,
Distributed and Network-Based Processing (PDP 2008), Feb 2008, pp. 283–292.

[24] Eskil Hansen and Alexander Ostermann, High order splitting methods for analytic semigroups

exist, BIT. Numerical Mathematics 49 (2009), no. 3, 527–542.
[25] Eskil Hansen and Tony Stillfjord, Convergence analysis for splitting of the abstract differential

Riccati equation, SIAM Journal on Numerical Analysis 52 (2014), no. 6, 3128–3139.
[26] Willem Hundsdorfer and Jan Verwer, Numerical solution of time-dependent advection-

diffusion-reaction equations, Springer Series in Computational Mathematics, vol. 33,

Springer-Verlag, Berlin, 2003.
[27] A. Ichikawa and H. Katayama, Remarks on the time-varying H∞ Riccati equations, Syst.

Cont. Lett. 37 (1999), no. 5, 335–345.
[28] Antti Koskela and Hermann Mena, Analysis of Krylov Subspace Approximation to Large

Scale Differential Riccati Equations, ArXiv e-prints (2017).
[29] N. Lang, Numerical methods for large-scale linear time-varying control systems and related

differential matrix equations, Dissertation, Technische Universität Chemnitz, Chemnitz, Ger-
many, June 2017.

[30] N. Lang, H. Mena, and J. Saak, On the benefits of the LDL
T factorization for large-scale

differential matrix equation solvers, Linear Algebra Appl. 480 (2015), 44–71.
[31] H. Mena, A. Ostermann, L.-M. Pfurtscheller, and C. Piazzola, Numerical low-rank approxi-

mation of matrix differential equations, J. Comput. Appl. Math. (2018), Accepted for publi-
cation.

[32] H. Mena and L. Pfurtscheller, An efficient SPDE approach for El Niño, ArXiv e-prints (2017).
[33] Yuji Nakatsukasa, Gerschgorin’s theorem for generalized eigenvalue problems in the Euclidean

metric, Mathematics of Computation 80 (2011), no. 276, 2127–2142.
[34] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron, Scalable parallel programming

with cuda, Queue 6 (2008), no. 2, 40–53.
[35] C. Penland and P.D. Sardeshmukh, The optimal growth of tropical sea surface temperature

anomalies, J. Clim. 8 (1995), 1999–2024.
[36] T. Penzl, Eigenvalue decay bounds for solutions of Lyapunov equations: the symmetric case,

Syst. Cont. Lett. 40 (2000), 139–144.
[37] I. R. Petersen, V. A. Ugrinovskii, and A. V. Savkin, Robust control design using h∞ methods,

Springer-Verlag, London, UK, 2000.
[38] Jill Reese and Sarah Zaranek, GPU programming in Matlab, MathWorks News&Notes. Nat-

ick, MA: The MathWorks Inc (2012), 22–5.



18 H. MENA, L.-M. PFURTSCHELLER, AND T. STILLFJORD

[39] Jens Saak, Effiziente numerische Lösung eines Optimalsteuerungsproblems für die Abkühlung

von Stahlprofilen, Ph.D. thesis, Diplomarbeit, Fachbereich 3/Mathematik und Informatik,
Universität Bremen, D-28334 Bremen, 2003.

[40] D. C. Sorensen and Y. Zhou, Bounds on eigenvalue decay rates and sensitiv-

ity of solutions to Lyapunov equations, Tech. Report TR02-07, Dept. of Comp.
Appl. Math., Rice University, Houston, TX, June 2002, Available online from
http://www.caam.rice.edu/caam/trs/tr02.html#TR02-07 .

[41] Tony Stillfjord, Low-rank second-order splitting of large-scale differential Riccati equations,
IEEE Trans. Automat. Control 60 (2015), no. 10, 2791–2796.

[42] , Adaptive high-order splitting schemes for large-scale differential Riccati equations,
Numerical Algorithms (2017).

Universidad Yachay Tech, Hacienda San José s/n, San Miguel de Urcuqúı, Ecuador
E-mail address: mena@yachaytech.edu.ec

Universität Innsbruck, Technikerstraße 13, A-6020 Innsbruck, Austria
E-mail address: Lena-Maria.Pfurtscheller@uibk.ac.at

Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1,
DE-39106 Magdeburg, Germany

E-mail address: stillfjord@mpi-magdeburg.mpg.de

http://www.caam.rice.edu/caam/trs/tr02.html#TR02-07

	1. Introduction
	2. Splitting schemes
	2.1. Differential Lyapunov equations
	2.2. Differential Riccati equations
	2.3. Generalized Lyapunov equations
	2.4. Generalized Riccati equations

	3. GPU considerations
	3.1. Action of the matrix exponential
	3.2. Computing the matrix equations on the GPU

	4. Numerical experiments
	4.1. Small-scale accuracy verification
	4.2. GPU speed-up
	4.3. Real-world example: Simulation of El Niño
	4.4. Real-world example: Steel cooling

	5. Conclusions
	Acknowledgements
	References

