
Numerical Algorithms
https://doi.org/10.1007/s11075-019-00687-w

ORIGINAL PAPER

GPU acceleration of splitting schemes applied
to differential matrix equations

HermannMena1,2 · Lena-Maria Pfurtscheller2 ·Tony Stillfjord3

Received: 22 May 2018 / Accepted: 7 March 2019 /
© The Author(s) 2019

Abstract
We consider differential Lyapunov and Riccati equations, and generalized versions
thereof. Such equations arise in many different areas and are especially important
within the field of optimal control. In order to approximate their solution, one may
use several different kinds of numerical methods. Of these, splitting schemes are
often a very competitive choice. In this article, we investigate the use of graphical pro-
cessing units (GPUs) to parallelize such schemes and thereby further increase their
effectiveness. According to our numerical experiments, large speed-ups are often
observed for sufficiently large matrices. We also provide a comparison between dif-
ferent splitting strategies, demonstrating that splitting the equations into a moderate
number of subproblems is generally optimal.

Keywords Differential Lyapunov equations · Differential Riccati equations ·
Large scale · Splitting schemes · GPU acceleration

� Tony Stillfjord
stillfjord@mpi-magdeburg.mpg.de

Hermann Mena
mena@yachaytech.edu.ec

Lena-Maria Pfurtscheller
Lena-Maria.Pfurtscheller@uibk.ac.at

1 Universidad Yachay Tech, Hacienda San José s/n, San Miguel de Urcuquı́, Ecuador

2 Universität Innsbruck, Technikerstraße 13, A-6020, Innsbruck, Austria

3 Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, DE-39106,
Magdeburg, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s11075-019-00687-w&domain=pdf
http://orcid.org/0000-0001-6123-4271
mailto: stillfjord@mpi-magdeburg.mpg.de
mailto: mena@yachaytech.edu.ec
mailto: Lena-Maria.Pfurtscheller@uibk.ac.at

Numerical Algorithms

1 Introduction

We are interested in differential matrix equations of Lyapunov or Riccati type, or
generalized versions of these. They are all of the following form:

Ṗ = ATP + PA + Q + G(P),

where A ∈ R
n×n and Q ∈ R

n×n are given matrices, G is a matrix-valued function of
the solution P ∈ R

n×n. For differential Lyapunov equations (DLE), we have G(P) =
0; and for differential Riccati equations (DRE), we have G(P) = −PBR−1BTP

with two given matrices B ∈ R
n×m and R ∈ R

m×m. Such equations occur frequently
in many different areas, such as in optimal/robust control, optimal filtering, spectral
factorizations, H∞-control, and differential games [1, 6, 30, 40].

Perhaps the most relevant setting is the linear quadratic regulator (LQR) problem.
There, the aim is to optimize a finite-time cost function of the following form:

J (u) =
∫ T

0
‖y(t)‖2 + ‖u(t)‖2 dt, T ≥ 0,

under the constraints that ẋ = Ax + Bu (state equation) and y = Cx (output
equation, with C ∈ R

p×n). In this case, the solution to the DLE with Q = CTC

gives the observability Gramian of the system, which characterizes the relevant states
x for the input-output mapping u �→ y. The solution of the DRE, on the other
hand, provides the optimal input that minimizes J , in state feedback form. In fact,
if P solves the DRE with Q = CTC, then the optimal input uopt is given by
uopt(t) = −R−1BTP(T − t)x(t).

For the generalized DLE and DRE versions, an additional linear term SPST

appears in G(P), where S ∈ R
n×n is a given matrix. Such equations also arise in the

LQR setting, when a stochastic perturbation of multiplicative type is included in the
state equation.

In recent years, a number of numerical methods have been suggested for large-
scale DLEs, DREs, and related equations. The classic ones, low-rank versions of
BDF, and Rosenbrock schemes [14, 15, 33] are usually outperformed by more mod-
ern methods such as Krylov-based projection schemes [31], peer methods [32], or
splitting schemes [34, 44, 45]. In this paper, we focus on splitting schemes. These
methods lower the computational cost by dividing the problem into simpler subprob-
lems such as Ṗ = ATP + PA and Ṗ = Q and then solve these separately, in
sequence. While the splitting of course introduces an additional error, this is generally
compensated for by the decreased computational cost and leads to large speed-ups.

The hypothesis to be investigated in this paper is that utilizing a graphical process-
ing unit (GPU) to parallelize the schemes may further greatly increase the efficiency.
Such speed-ups have already been observed for other related methods for DREs
[11–13] as well as for their steady-state versions: the algebraic Lyapunov and Ric-
cati equations [13, 16]. In the just mentioned cases, the basic building block of the
schemes is the computation of the matrix sign function, which requires the inver-
sion of a large dense matrix. In a splitting scheme, the basic building block is instead

Numerical Algorithms

the computation of the action of a matrix exponential on a skinny matrix. Speed-
ups have previously been observed for applications where matrix exponentials are
multiplied by vectors [4, 22] (see also [25]). In these works, a speed-up is gener-
ally not observed for “small” matrices (n � 1000), and the speed-up is of limited
size when the matrices are sparse rather than dense. As we are typically interested
in at least medium-sized problems (1000 � n � 10000), we do expect to see a sig-
nificant speed-up. Moreover, while we are necessarily considering the sparse case,
we are not simply computing the action of the matrix exponential on vectors, but on
skinny block matrices. This increases the parallelizability of the problem and makes
the sparsity issues noted in, e.g., [8, 22, 26] less relevant.

Since the relevant methods are mainly implemented in MATLAB, we restrict our-
selves to utilizing its built-in GPU support [41] via NVIDIA’s CUDA [37] parallel
programming interface. We do not claim that this approach leads to the best pos-
sible performance. The point is rather to demonstrate that quite simple changes to
the implementations of the splitting schemes may lead to much better performance,
when one has access to a GPU. Our results already show a remarkable improvement
in efficiency, and this can only increase with further optimizations and the use of
more advanced techniques tailored to specific problems.

In addition, we provide comparisons between different splitting strategies for
DLEs and DREs. We particularly address questions that naturally arise while solving
these equations by splitting methods. For example, should the DLE be split at all?
Should the DRE be split into two or three subproblems? Our results in this direction
demonstrate that it is usually beneficial to use the smallest number of splits. How-
ever, when Q is sufficiently small it is beneficial to split it too, since the extra error
is similarly small and the subproblems Ṗ = ATP + PA and Ṗ = Q are very cheap
to compute compared to Ṗ = ATP + PA + Q.

An outline of the article is as follows. In Section 2, we review the idea behind split-
ting schemes and apply them to all the mentioned equation types. Then, we consider
implementation details in Section 3. The simple changes necessary for GPU utiliza-
tion, and a discussion on what efficiency improvements may be expected is given
in Section 4. The actual speed-ups are presented in Section 5, in the form of several
numerical experiments. Finally, we summarize our conclusions in Section 6.

2 Splitting schemes

Splitting schemes are numerical methods that are applicable to differential equations
that have a natural decomposition into two (or more) parts:

Ṗ = F(P) = F1(P) + F2(P), P (0) = P0.

With “natural decomposition,” we mean that the subproblems

Ṗ = F1(P), and Ṗ = F2(P)

are either simpler or cheaper to solve than the full problem Ṗ = F(P). This is the
case in many problems, with the most common example being reaction-diffusion

Numerical Algorithms

equations ẋ = Δx + f (x) with homogeneous Dirichlet boundary conditions. In this
case, there are highly optimized methods for the pure diffusion problem ẋ = Δx,
while the subproblem ẋ = f (x) often turns into a local rather than global problem—
i.e., it is enough to solve ẋi = f (xi) for every discretization point xi . (For some
caveats in the case of other boundary condition types, see e.g. [2, 23, 24].) In the
following, we denote the solution to Ṗ = Fk(P), P(0) = P0, by P(t) =: Tk(t)P0.

The most basic and commonly used (exponential) splitting schemes are the Lie
and Strang splittings. They are given by the following time-stepping operators

LhP0 = T2 (h) T1 (h) P0, and ShP0 = T1

(
h

2

)
T2 (h) T1

(
h

2

)
P0,

respectively, where h is the time step. Of course, the roles of T1 and T2 might be
interchanged. The schemes are then defined by the following:

P L
k+1 = LhP

L
k , and P S

k+1 = ShP
S
k ,

with P L
0 = P S

0 = P0. Here, P L
k and P S

k both approximate P(kh). The Lie splitting
is first-order accurate while Strang splitting is second-order accurate under certain
conditions on F1, F2, and F (see, e.g., [29]). For simplicity, we restrict ourselves to
the Strang splitting scheme in this paper, but one might also consider higher-order
schemes [21, 27, 45], or schemes where the subproblems are not solved exactly (see,
e.g., [28, 29]).

Clearly, one might continue the splitting procedure if the system is naturally
decomposed into more than two parts. If

Ṗ = F1(P) + F2(P) + F3(P),

then applying the Lie and Strang splitting schemes twice leads to the following
schemes:

L̃hP0 = T3 (h) T2 (h) T1 (h) P0, and

S̃hP0 = T1

(
h

2

)
T2

(
h

2

)
T3 (h) T2

(
h

2

)
T1

(
h

2

)
P0.

Again, the roles of T1, T2, and T3 might be interchanged. Different compositions with
a possibly higher number of operators might also be considered, in order to optimize
the structure of the error. We refer to [5] but do not consider such methods here.

Like essentially every other method for solving differential matrix equations, the
splitting schemes need to make use of low-rank structure in order to be competitive
in the large-scale setting. This means that we can expect the singular values of the
symmetric, positive semi-definite solution P to decay rapidly (see, e.g., [3, 7, 9,
39, 43]); thus, we can factorize P ≈ LDLT for L ∈ R

n×r , D ∈ R
r×r with r 	

n. By formulating the methods to only operate on L and D and never explicitly
form the product LDLT, we drastically lower both the memory requirements and the
computational cost.

Numerical Algorithms

In the following, we outline different splitting strategies for all the matrix equa-
tions mentioned so far, and also review how to low-rank factorize each arising
subproblem.

2.1 Differential Lyapunov equations

As a first example, we consider the following differential Lyapunov equation:

Ṗ = ATP + PA + Q, P (0) = P0. (1)

Here, we may choose F1 as the linear part and F2 as the constant term, i.e.,

F1(P) = ATP + PA, and F2(P) = Q.

These subproblems can be solved explicitly and the solutions at time h are given
by the following:

T1(h)P0 = ehAT
P0ehA,

T2(h)P0 = P0 + hQ.

It is easily seen that if we have the LDLT-factorizations P0 = LDLT and Q =
LQDQLT

Q, then we can also factorize these solutions as follows:

T1(h)P0 =
(

ehAT
L

)
D

(
ehAT

L
)T

, (2)

T2(h)P0 = [
L LQ

] [
D 0
0 hDQ

] [
L LQ

]T . (3)

We could also note that the exact solution to the full problem is given by the
following:

P(t) = etAT
P0etA +

∫ t

0
esAT

QesAds, t ∈ [0, T], (4)

where the integral term may be approximated by high-order quadrature as in [44].
While this does not result in a splitting scheme of the form described above, we still
include it in our experiments due to its similarity and efficiency.

2.2 Differential Riccati equations

A second example is given by the differential Riccati equation:

Ṗ = ATP + PA + Q − PBR−1BTP, P (0) = P0. (5)

In this case, we can either split in three terms:

F1(P) = ATP + PA, F2(P) = Q, and F3(P) = −PBR−1BTP,

Numerical Algorithms

or two terms:1

F12(P) = ATP + PA + Q and F3(P) = −PBR−1BTP .

The latter was advocated in [44, 45] because (experimentally) the error constant in
the three-term splitting is much larger. However, the three-term splitting does not
need to approximate the integral term; thus, the larger error might be compensated
for by a lower computational cost.

In either case, we note that the solution at time h to the problem Ṗ = F3(P),
P(0) = P0, is given explicitly by the following:

T3(h)P0 = (I + hP0BR−1BT)−1P0. (6)

A low-rank factorization is given by the following:

T3(h)LDLT = L(I + hDLTBR−1BTL)−1DLT.

Note that the I in this equation is not the same identity matrix as in the previous
equation, because the L-part of P0 has moved. We thus only need to solve a small
linear equation system.

2.3 Generalized Lyapunov equations

We further consider a generalized Lyapunov equation of the following form:

Ṗ = ATP + PA + Q + SPST, P (0) = P0. (7)

We again split the equation and obtain three subproblems defined by2 the following:

F1(P) = ATP + PA, F2(P) = Q, and F4(P) = SPST.

The first two subproblems are handled as before, whereas we approximate T4(h)(P)

by the midpoint rule, analogously to what is done in [20]:

T4(h)P0 ≈ P0 + hS
(
P0 + h

2
SP0S

T
)
ST.

Given P0 = L0D0L
T
0, we get T4(h)P0 ≈ LDLT, where

L =
[
L0,

√
hSL0,

h√
2
S2L

]
, and D = blkdiag(D0, D0, D0),

where blkdiag is the block diagonal operator that puts its block arguments on the
diagonal of an otherwise zero matrix.

We note that when using a second-order splitting scheme like the Strang splitting,
it is necessary to use a second-order method like the midpoint rule in order to pre-
serve the overall convergence order. If we use instead a first-order scheme like the
Lie splitting, it is sufficient to approximate Ṗ = F4(P) by, e.g., the explicit Euler
method.

1We deliberately use F12 and F3 here rather than F1 and F2, in order to not change the meaning of
the previously defined F1 and F2. The two-term splitting schemes are obviously still well-defined after
substituting the proper numbers.
2For the same reason as in the previous note, we use F4 rather than F3 here.

Numerical Algorithms

2.4 Generalized Riccati equations

Moreover, we study a generalized Riccati equation given by the following:

Ṗ = ATP + PA + Q + SPST − PBR−1BTP, P (0) = P0, (8)

and split this equation into three subproblems of the following form:

F12(P) = ATP + PA + Q, F3(P) = −PBR−1BTP, and F4(P) = SPST.

These subproblems are solved similarly as in the previous subsections. We do not
consider a four-term splitting since experience suggests that the extra error due to the
splitting would become prohibitively large.

3 Implementations

In this section, we describe the implementation of the Strang splitting scheme applied
to the differential matrix equations discussed in Section 2. Other splitting schemes
such as the Lie splitting are implemented analogously.

In all the considered equations, the most demanding part is to compute the action
of the matrix exponential in (2) efficiently. In [18, 19], the authors considered an
algorithm based on Leja interpolation and showed that applying the algorithm to a
matrix derived from a spatial discretization of a differential operator is very efficient.
We therefore use this method to compute ehAL for different skinny matrices L, and
denote it by expleja in the following.

First, we consider the DLE case. The discussion in Section 2.1 immediately leads
to Algorithm 1.

Algorithm 1 Solving DLE by Strang splitting.

1: Given: A, Q, P0, T , Nt , h = T
Nt

.

2: Compute LDLT-decompositions of Q = LQDQLT
Q and P0 = LDLT.

3: Compute parameters param for Leja interpolation.
4: for k = 1, . . . , Nt do
5: L = expleja(h/2, A, L,param)

6: L = [L,LQ]
7: D = blkdiag(D, hDQ);
8: [L,D] = column compression(L, D);
9: L = expleja(h/2, A, L,param)

10: end for
11: P = LDLT;

On the other hand, as mentioned in Section 2.1, it is possible to derive an explicit
form of the solution of the DLE given by (4). Following [45], we use a high-order
quadrature rule to compute an approximation to the integral term. This computation
is again based on using expleja, now to compute eskALQ for various sk ∈ [0, h]

Numerical Algorithms

with the LDLT-factorization Q = LQDQLT
Q. This leads to the alternative Algorithm

2, which (as noted in Section 2.1) is not a splitting scheme per se.

Algorithm 2 Solving DLE by quadrature

1: Given: A, Q, P0, T , Nt , h = T
Nt

.
2: Repeat Steps 2 and 3 from Algorithm 1.
3: Approximate integral:

• Compute n nodes sk and weights wk of a quadrature formula;
• LI = [expleja(s1, A, LQ), . . .expleja(sn, A, LQ)];
• DI = blkdiag(w1DQ, . . . , wnDQ);
• [LI , DI] = column compression(LI , DI).

4: for k = 1, . . . , Nt do
5: L = [expleja(h, A, L,param), LI]
6: D = blkdiag(D, DI);
7: [L,D] = column compression(L, D);
8: end for
9: P = LDLT .

We note that in both Algorithm 1 and Algorithm 2 there is a so-called column com-
pression step. This refers to the procedure of discarding (almost) linearly dependent
columns from L, and serves to keep the number of columns in the approximations
small. Without such a step, each iteration of Algorithm 1 (for example) would add the
columns in LQ to L, while the rank would likely stay similar. The compression can
be performed in various ways, usually by computing either a reduced rank-revealing
QR factorization or a reduced SVD [33]. Here, we employ a reduced SVD factoriza-
tion, followed by a diagonalization of the small resulting system. It is cheap as long
as the rank of the solution stays low, which is the case in many applications.

As noted in Section 2, we also want to approximate the solutions to DREs and
generalized DLEs and DREs. Therefore, we further have to solve the subproblems
given by F3 and F4. Pseudo-codes for these computations, based on the low-rank
factorizations given in Sections 2.2–2.3, are shown in Algorithms 3–4.

Algorithm 3 Solving Ṗ = F3(P) over [0, h].
1: Given: B, R−1, h and a low-rank factorization of P = LDLT.
2: Compute D = (I + hDLTBR−1L)−1D;
3: P = LDLT.

Algorithm 4 Solving Ṗ = F4(P) over [0, h].
1: Given: S, h and a low-rank factorization of P = LDLT.
2: Compute L = [L,

√
hSL, h/

√
2 S2L];

3: Compute D = blkdiag(D, D, D);
4: [L,D] = column compression(L, D);
5: P = LDLT.

Numerical Algorithms

We use three approaches to split the DRE: First, we incorporate Algorithm 3 in
Algorithm 2 in order to solve the Lyapunov part of the equation via quadrature and
the nonlinear term via the exact solution formula in (6), forming the following:

T12

(
h

2

)
T3 (h) T12

(
h

2

)
P0.

Further, we consider the three-term splitting

T1

(
h

2

)
T2

(
h

2

)
T3 (h) T2

(
h

2

)
T1

(
h

2

)
P0,

by extending Algorithm 1 with a third step given by Algorithm 3. Finally, we reverse
the order of the three-term splitting as follows:

T1

(
h

2

)
T3

(
h

2

)
T2 (h) T3

(
h

2

)
T1

(
h

2

)
P0.

Due to the additional splitting term, further errors are introduced, but since the
integral does not have to be approximated, the three-term splitting codes are less
computationally demanding than the two-term splittings.

The generalized DLE can be solved by the same three approaches. Using Algo-
rithm 4, T3 is replaced by T4 in the previous three formulas. Finally, we consider a
three-term Strang splitting for the generalized DRE, given by the following:

T12

(
h

2

)
T3

(
h

2

)
T4 (h) T3

(
h

2

)
T12

(
h

2

)
P0.

The modifications to Algorithms 1 and 2 for the (generalized) DRE and gener-
alized DLE cases through use of Algorithms 3 and 4 are obvious, and we therefore
omit full listings of these versions.

4 GPU considerations

All the algorithms in the previous section were implemented in MATLAB. For GPU
acceleration, we used the Parallel Computing Toolbox, which interfaces with the
CUDA library. This is a framework for general purpose computing on GPUs. Recent
releases of MATLAB expose a large fraction of this framework as overloaded built-
in functions, i.e., precompiled code that operates either on the CPU or the GPU,
depending on where the data currently resides. Thus, e.g., solving a system of lin-
ear equations Ax = b on the GPU can be accomplished by the familiar syntax x
= A\b after A and b have been instantiated as objects on the GPU. This data trans-
fer is performed by the gpuArray function. The result x may then be transferred
back to the CPU by use of the gather function. We refer to, e.g., [41]. In general,

Numerical Algorithms

communication between the CPU and the GPU is expensive. We therefore first move
all the data to the GPU, do all vector- and matrix-computations on the GPU using
built-in functions and transfer only scalar quantities and the final results back to the
CPU.

The main computational effort in all the algorithms is the computation of the
matrix exponential actions via the expleja code. This consists of a (one-time)
estimation of the spectrum of A by the Gershgorin disk theorem, a (one-time) compu-
tation of exponential interpolation parameters, and a Newton interpolation [18, 19].
These functions all depend only on matrix-vector or matrix-matrix products and sim-
ple built-in functions like diag, sum, and abs, all of which have overloaded GPU
versions. There is thus no need for any changes to the main code.

4.1 Main routines and limiting factors

As will be demonstrated in Section 5, around 90–95% of the total computation time
is spent in the Newton interpolation part of the expleja code. On the CPU side,
this can be further broken down into the multiplication of a sparse matrix with a
dense skinny matrix (65–75%), the computation of the 1-norm of a dense skinny
matrix (15–25%), and the addition of two skinny matrices (5%). On the GPU side,
the ranking of these operations are typically the same, but the relative percentages
differ.

All of these operations are memory-bound, i.e., their computation is limited by
memory bandwidth rather than processing power. This can easily be confirmed by
considering the number of necessary read/writes compared to the number of actual
floating point operations.

4.2 Possible perfomance gains

Since modern GPUs feature larger memory bandwidths than comparable CPUs
and since the main operations are also highly parallelizable, we expect to see a
speed-up when utilizing the GPU. This speed-up will likely not be as large as
for a compute-bound problem, where GPUs excel, but should still be significant,
especially considering the essentially zero cost of extra implementation effort.

If both the GPU and CPU operated at peak performance, the observed speed-up
would simply be the ratio of the respective memory bandwidths. This will, however,
not be the case in practice. Still, one might expect that both platforms operate at a
similar percentage of peak performance, and that the ratio will stay similar. In prac-
tice, however, this will also not be the case, due to differences in code optimization.
In the current application, the overwhelming majority of the computations are per-
formed in very low-level operations which we can not influence. Since MATLAB is
not open source, we have no insight into what particular algorithm is used or how well
it is optimized. Because the main operations are memory-bound, efficient memory
allocation also plays a large role. Here, again, we have no insight into what strategies
MATLAB follows. Finally, the CPU typically also has one additional layer of (larger)
cache memory than the GPU, which further complicates things. For these reasons, it
is difficult to predict what kind of speed-up to expect.

Numerical Algorithms

5 Numerical experiments

The aim of this section is to apply the different splitting strategies to various examples
and demonstrate that the GPU implementation consistently outperforms the CPU
version, often by a large margin.

We first describe a number of examples, including two arising from real-world
problems. As an implementation verification, we then test our codes on the first
small-scale problem, where we can compute an accurate reference solution by vec-
torization of the problem. We observe the correct orders of convergence and also
verify that the GPU and CPU codes indeed give the same results. Then, we compare
the speed of the two platforms by applying the different algorithms to the given test
examples, and demonstrate that GPU acceleration is advantageous in all cases.

The tests were run on two different systems. The first one, hereafter referred to as
“System 1”, has an Intel Xeon E5-2630v3 CPU and a Tesla K80. The K80 contains
two separate GPUs, of which we use only one. The maximum memory bandwidths
are here 59 GB/s3 for the CPU and 240 GB/s4 for the GPU. This system has 24 GB
RAM available. The second system, hereafter referred to as “System 2”, is one node
of the Mechthild5 HPC cluster at the Max Planck Institute Magdeburg. This has an
Intel Xeon Silver 4110 CPU and a Tesla P100 GPU. The maximum memory band-
widths are here 115 GB/s6 for the CPU and 732 GB/s7 for the GPU. This system has
192 GB RAM available.

In all our experiments, we use the tolerance 10−16 for both the column com-
pression and the Leja interpolation. This ensures that the approximations are not
unnecessarily truncated, and that the matrix exponential actions are essentially exact.
We use MATLAB R2017a on System 1 and R2017b on System 2. In both cases, we
deactivate the Java Virtual Machine by -nojvm. The computing times of the CPU
algorithms are estimated by the command tic - toc. For the GPU algorithms,
we do the same, except that we also call the wait function to ensure that all threads
on the GPU have finished their computations before the measurements.

5.1 Experiment descriptions

5.1.1 Example 1: Heat equation randommodel

We first consider the Laplacian on the unit square with homogeneous Dirichlet
boundary conditions. By discretizing it using central second-order finite differences
with nx grid points in each space dimension, we acquire a matrix A ∈ R

n×n with
n = n2

x . We let Q and P0 be randomly chosen matrices of rank 2 and rank 5, respec-
tively and take B to be a randomly chosen matrix of size n × 1. This corresponds

3https://ark.intel.com/products/83356/Intel-Xeon-Processor-E5-2630-v3-20M-Cache-2 40-GHz
4https://www.nvidia.com/en-us/data-center/tesla-k80/
5http://www.mpi-magdeburg.mpg.de/cluster/mechthild
6https://ark.intel.com/products/123547/Intel-Xeon-Silver-4110-Processor-11M-Cache-2 10-GHz
7https://www.nvidia.com/en-us/data-center/tesla-p100/

https://ark.intel.com/products/83356/Intel-Xeon-Processor-E5-2630-v3-20M-Cache-2_40-GHz
https://www.nvidia.com/en-us/data-center/tesla-k80/
http://www.mpi-magdeburg.mpg.de/cluster/mechthild
https://ark.intel.com/products/123547/Intel-Xeon-Silver-4110-Processor-11M-Cache-2_10-GHz
https://www.nvidia.com/en-us/data-center/tesla-p100/

Numerical Algorithms

to optimal (distributed) control of the heat equation, with a single input and two out-
puts, and gives rise to a DRE. By ignoring the B matrix, we get instead a DLE where
the solution corresponds to the time-limited Gramian of the system. In both cases,
we use the final time T = 1

2 .

5.1.2 Example 2: Stochastic heat transfer

For the generalized matrix equations, we consider an example introduced in [10]
arising from a stochastic heat transfer problem. The matrix A again denotes the
discretized 2D Laplacian on the unit square, but now with homogeneous Dirichlet
boundary conditions on two edges. On the third edge, we implement control through
the fixed boundary condition x = u, and on the final edge a stochastic Robin bound-
ary condition n · ∇x = 0.5(0.5 + dW)x is applied, where W is a Brownian motion.
This leads to a matrix B ∈ R

n×1 and a (sparse) matrix S ∈ R
n×n. The matrix

Q = CCT is defined by letting C = 1
n
(1, . . . , 1) be the matrix representation of the

mean. Similarly to the previous example, we may acquire a generalized DLE instead
by simply ignoring the matrix B. (Then, there is a homogeneous Dirichlet boundary
condition also on the third edge.) In both cases, we use the final time T = 1

2 .

5.1.3 Example 3: Simulation of El Niño

As a third example, we consider the real-world weather phenomenon El Niño. This
is characterized by an unusual warming of the sea surface temperature in the Indo-
Pacific ocean. It can be modeled by a stochastic advection equation driven by additive
noise [38] and its covariance is given by a DLE of the following form:

Ṗ (t) = AP(t) + P(t)AT + Q,

see [34, 35] for details. The matrix A arises from a centered finite difference approx-
imation of the advection operator and Q is the discretized covariance operator of the
random noise. We consider here the different discretization resolutions correspond-
ing to n = 624, 3900, 7800, and 15600 and use the final time T = 100. We note that
this problem only yields to a DLE.

5.1.4 Example 4: Simulation of steel cooling

For our final example, we consider the optimal cooling of steel profiles. This problem
has been widely studied in the literature, for details, see [17, 42]. It gives rise to a
DRE of the following form:

MTṖM = ATPM + MTPA + Q − MTPBR−1BTPM .

The matrices M and A are the mass and stiffness matrices resulting from a finite
element discretization of the Laplacian on a non-convex polygonal domain (the steel
profile). Q is chosen as CTC, where C is the discretization of an operator that
measures temperature differences between different points in the domain. (We want
an even temperature distribution.) Finally, the matrix B is the discretization of the
operator that implements the Neumann boundary conditions of the Laplacian—this

Numerical Algorithms

results in a boundary control application. Canceling MT and M leads to the following
equation:

Ṗ = M−TATP + PAM−1 + M−TQM−1 − PBR−1BTP,

which we can treat as outlined in Section 2.2 after replacing A by M−1A and Q by
M−TQM−1.

We note that we would normally never explicitly compute the (generally dense)
matrices involving M−1. In the CPU code, we form and reuse an incomplete LU
decomposition of M to cheaply solve a linear equation system whenever the action of
M−1 or M−T is required. In the GPU code, the issue is unexpectedly complicated by
the fact that MATLAB’s CUDA interface does not support solving equation systems
with sparse system matrices and (dense) block right-hand sides. This is supported in
the cuSPARSE library of CUDA itself, so until the MATLAB interface is extended
one might theoretically implement this capability by a MEX extension. In order to
demonstrate performance gains by rather easy means, however, we do not do this.
Instead, we compute and store a dense LU factorization. This is clearly not viable for
truly large-scale problems, but problems of up to size n ≈ 3 · 104 are easily possible
on our available hardware, and up to n ≈ 5.5 · 104 if AM−1 is explicitly formed at
a slightly higher initial cost. Despite the heavy additional memory requirement, the
GPU parallelization will lead to a significant speed-up.

An additional issue related to the mass matrix is the original Leja point interpola-
tion method for the computation of matrix exponential actions. One of the main steps
of this algorithm computes an estimate of the spectrum of A by the use of Gersh-
gorin discs. Since computing these requires direct access to the elements in A, it is
not directly applicable to AM−1 without explicitly forming the matrix. To get around
this issue and still acquire a cheap estimate, we utilized the results of [36] which
extends the Gershgorin approach to generalized eigenvalue problems. In our expe-
rience, this method overestimates the imaginary part of the spectrum but otherwise
works well. We note that if the GPU code utilizes dense matrices, we may of course
simply compute AM−1 and apply the original Leja point method. Since we expect
to be able to work with sparse matrices in the near future, however, we follow the
approach outlined above in both the CPU and GPU codes.

In the following, we consider the discretizations corresponding to n = 371, 1357,
5177, and 20209, for which the matrices have been precomputed . We take R−1 = I ,
P(0) = 0, and integrate until T = 450.

5.2 Implementation verification

In order to verify our implementations, we investigate the convergence properties
of the methods when applied to Example 1 in Section 5.1.1 and Example 2 in
Section 5.1.2 with n = 25. The reference solutions are computed by vectoriz-
ing the system and applying the MATLAB routine ode15s with relative tolerance
2.22 · 10−14 (which is the lowest possible relative tolerance) and absolute tolerance
10−20. We show only the results from the GPU versions of the code on System
1 to minimize clutter, but the CPU versions yield the same results and so do the
simulations on System 2.

Numerical Algorithms

The left plot of Fig. 1 shows an order plot for the Strang splitting (Algorithm 1)
applied to the DLE (1) arising from Example 1 in Section 5.1.1, and the right plot
shows the corresponding results for the quadrature rule method (Algorithm 2). Here,
and in the following, we identify the methods in the figure legends by in which order
the subproblems are solved. Thus, the splitting in this example is written as F1F2 and
the quadrature scheme is denoted by F12.

We note that the Strang splitting achieves second-order convergence as expected.
The quadrature rule, on the other hand, yields a constant but very low error. This is in
fact also the expected result, and the error is the error of the quadrature approximation
to the integral. While Strang splitting has recently been suggested multiple times
for DLEs, the extra cost for the quadrature rule is in our implementation only 14
additional evaluations of the matrix exponential action; we therefore expect that the
quadrature rule will essentially always outperform the splitting. This is confirmed in
the next section.

The situation is different for DREs, where we can split into either two or three
terms, and the results depend on how large the nonlinear term is compared to the
constant term. We consider the three approaches for DREs outlined in Section 3
and denote them by F12F3 (quadrature for the DLE part), F1F2F3 and F1F3F2. In
Fig. 2, we show an order plot for these methods applied to the DRE (5) arising from
Example 1 in Section 5.1.1. The left plot uses R−1 =1 and the right one R−1 =10−3.

The first observation to be made is that all the methods converge with the correct
order. We also see that the three-term splitting F1F3F2 is less accurate when R−1 =
1, whereas the errors of the two remaining splitting schemes behave similarly. Thus,
the error due to splitting off the part F3 is more severe than splitting F1 and F2. This
is because the nonlinear term is the dominant part here. Using instead R−1 = 10−3

means that it is less significant, and leads to a different result. We see that the three-
term splittings now yield roughly equally large errors, but that the two-term splitting
is about ten times more accurate than the other schemes. Here, we clearly observe
the additional error introduced by the third splitting term.

We also solve the generalized DLE (7) arising from Example 2 in Section 5.1.2 by
the three methods mentioned in Section 3 and show the corresponding errors in Fig. 3

step size
10-3 10-2 10-1

re
la

tiv
e

er
ro

r

10-4

10-2

100 F
1
 F

2
 GPU

slope 2

step size
10-3 10-2 10-1

re
la

tiv
e

er
ro

r

10-12

10-10

10-8

10-6

F
12

 GPU

slope 2

Fig. 1 Relative errors of the Strang splitting scheme (left) and the quadrature rule method (right) applied
to the DLE in Example 1 in Section 5.1.1

Numerical Algorithms

step size
10-3 10-2 10-1

re
la

tiv
e

er
ro

r

10-4

10-2

100

F
12

F
3
 GPU

F
1
F

2
F

3
 GPU

F
1
F

3
F

2
 GPU

slope 2

step size
10-3 10-2 10-1

re
la

tiv
e

er
ro

r

10-5

100

F
12

F
3
 GPU

F
1
F

2
F

3
 GPU

F
1
F

3
F

2
 GPU

slope 2

Fig. 2 Relative error of the different splitting schemes applied to DRE with R−1 = 1 (left) and R−1 =
10−3 (right).

(left). Moreover, we take R = 1 and solve also the generalized DRE with the three-
term Strang splitting and present the resulting errors in Fig. 3 (right) We again see
that the two-term splitting of the generalized DLE is approximately ten times more
accurate than the other two splitting schemes. As in all previous examples, we also
observe that the error of the generalized DRE behaves as expected, i.e., it converges
with order two and remains small for all step sizes.

Finally, we test our implementation also on the larger Example 3 in Section 5.1.3
and Example 4 in Section 5.1.4. Unlike the previous small-scale examples, we do not
have a similarly exact reference solution. We instead compare our approximations to
an approximation computed with the same scheme, but with a 16 times smaller step
size. The left plot of Fig. 4 shows the relative error of the quadrature scheme versus
the step sizes when applied to the DLE arising in Example 3 in Section 5.1.3, and
the right plot shows the errors of the two-term and two different three-term splitting
schemes applied to the DRE arising from Example 4 in Section 5.1.4. The problem
sizes are here n = 1740 and n = 1357, respectively, but the error behaves similarly
for the other problem sizes. We see that the quadrature rule again produces an essen-
tially exact solution regardless of step size, while the splitting schemes all converge

step size
10-3 10-2 10-1

re
la

tiv
e

er
ro

r

10-4

10-2

100

F
12

F
4
 GPU

F
1
F

2
F

4
 GPU

F
1
F

4
F

2
 GPU

slope 2

step size
10-3 10-2 10-1

re
la

tiv
e

er
ro

r

10-4

10-2

F
12

F
3
F

4
 GPU

slope 2

Fig. 3 Relative errors of the different splitting schemes applied to the generalized DLE (left) and the
generalized DRE (right)

Numerical Algorithms

step size
10-2 10-1 100 101

re
la

tiv
e

er
ro

r

10-8

10-7

10-6

10-5

10-4

F
12

 GPU

F
1
F

2
 GPU

slope 2

step size
10-1 100

re
la

tiv
e

er
ro

r

10-10

10-5

100

F
12

F
3
 GPU

F
1
F

2
F

3
 GPU

F
1
F

3
F

2
 GPU

slope 2

Fig. 4 The relative error for the quadrature rule applied to the El Niño DLE with n = 1740 (left) and the
relative error for three different splitting schemes applied to the steel cooling DRE with n = 1357 (right)

with order two. The two-term splitting once again yields a much lower error than the
three-term versions.

5.3 Performance onmain sub-functions

In the following, we show the performance of the main sub-functions for the quadra-
ture rule applied to the DLE arising from Example 1 in Section 5.1.1 with n = 22500.
The other methods and problem cases behave similarly. Using the MATLAB profiler,
one can show that in the CPU implementation around 98% of the total time is spent
in the expleja, which in turn spends almost all its time in the Newton interpolation
function. For the GPU implementation, the corresponding value is about 90% of the
total cost. Hence, we focus on the main sub-functions in this Newton algorithm. They
consist of the multiplication of a sparse matrix with a dense skinny matrix (denoted
SpMM in the following), the computation of the 1-norm of a dense skinny matrix
(1-norm) and the addition of two skinny matrices (addition). The time spent in these
main sub-functions, relative to the total computation time, is shown in Table 1 for the
CPU and GPU versions of the code and both systems.

As already mentioned in Section 4.2, we do not know which algorithm MATLAB
uses for these sub-functions, but we can compare their costs on the CPU and GPU.
We show in Fig. 5 the computational costs for the three main sub-functions, applied to
randomly generated skinny matrices of ranks 15, 30, and 45. These ranks correspond

Table 1 Relative costs of the main sub-functions, in terms of the total computation time

Machine Newton SpMM 1-norm addition

System 1 CPU 98.6% 72.4% 19.3% 4.4%

GPU 93.3% 40.4% 36.2% 15.4%

System 2 CPU 98.3% 65.2% 27.1% 3.8%

GPU 89.4% 35.8% 36.9% 14.0%

Numerical Algorithms

SpMM 1-norm addition

tim
e

in
 s

ec
on

ds

10-5

10-4

10-3

10-2

CPU S
1

GPU S
1

CPU S
2

GPU S
2

SpMM 1-norm addition

tim
e

in
 s

ec
on

ds

10-5

10-4

10-3

10-2

SpMM 1-norm addition

tim
e

in
 s

ec
on

ds

10-5

10-4

10-3

10-2

Fig. 5 Logarithmic plot of the computational costs of the three main operations for matrices with rank 15
(left), rank 30 (middle), and rank 45 (right)

to the typical ranks of the solutions to the matrix equations arising from Example 1 in
Section 5.1.1 and Example 2 in Section 5.1.2. Here, and in the following, we denote
the different systems by S1 and S2 in the figure legends, to save space.

We see that for System 1, we obtain a GPU speed-up of a factor 11–13 depending
on the rank. This is higher than the expected theoretical factor 4.07. For the compu-
tation of the norm, however, we get only a factor of 1.8. The speed-up of the addition
varies between 2.1 and 8.0. These different numbers reflect different optimization
strategies and uses of cache memory on the different platforms. Since the SpMM
multiplication takes up more than 70% of the total costs for the CPU, we draw the
conclusion that we can expect a speed-up which is higher than 4.

For System 2, the SpMM speed-up depends highly on the rank; we get a factor
25.3 for rank 15, 53.2 for rank 30, and 43.4 for rank 45. This is again higher than
the theoretical factor 6.37. The speed-up of the 1-norm is between 3.0 and 6.2 and
the addition varies between 4.2 and 25.7. We thus again expect to see a speed-up
higher than what would be expected if both the underlying libraries operated at peak
efficicency.

size of matrix A 104
0 0.5 1 1.5 2 2.5

ra
tio

0

2

4

6

8

10

12
F

12
 S

1

F
1
F

2
 S

1

F
12

 S
2

F
1
F

2
 S

2

size of matrix A 104
0 0.5 1 1.5 2 2.5

ra
tio

0

5

10

15
F

12
F

3
 S

1

F
1
F

2
F

3
 S

1

F
1
F

3
F

2
 S

1

F
12

F
3
 S

2

F
1
F

2
F

3
 S

2

F
1
F

3
F

2
 S

2

Fig. 6 Relative computational costs of the algorithms applied to the DLE (left) and DRE (right) arising
from Example 1 in Section 5.1.1, for different problem sizes

Numerical Algorithms

Table 2 Computational costs of the algorithms applied to the DLE arising from Example 1 in
Section 5.1.1, for different problem sizes (Wall-clock time, seconds)

n 2500 5625 10000 15625 22500

System 1 F12 CPU 8.3 · 100 3.5 · 101 8.3 · 101 1.9 · 102 4.1 · 102

F12 GPU 5.3 · 100 1.4 · 101 2.6 · 101 4.8 · 101 8.6 · 101

F1F2 CPU 4.4 · 100 2.0 · 101 4.6 · 101 1.0 · 102 2.0 · 102

F1F2 GPU 4.9 · 100 1.1 · 101 1.9 · 101 2.9 · 101 4.8 · 101

System 2 F12 CPU 7.6 · 100 3.8 · 101 9.8 · 101 2.7 · 102 4.5 · 102

F12 GPU 4.0 · 100 9.1 · 100 1.5 · 101 2.4 · 101 3.9 · 101

F1F2 CPU 3.9 · 100 2.0 · 101 4.8 · 101 1.2 · 102 2.6 · 102

F1F2 GPU 3.1 · 100 7.3 · 100 1.2 · 101 1.8 · 101 2.7 · 101

5.4 Overall performance

Next, we measure the computational times for the full algorithms. First, we consider
Example 1 in Section 5.1.1 with the different sizes n = 625, 2500, 5625, 10000,
15625, and 22500, and the step size h = 0.005.

In Fig. 6 (left), we plot the ratio between the computing time of the CPU and of
the GPU as a function of the problem size when applying the different methods to the
arising DLE using both systems. The raw data can also be found in Table 2, except for
the somewhat uninteresting case n = 625 which we omit due to space reasons. We
observe that for small matrices the CPU implementation is less time-consuming than
the GPU implementation. However, the GPU starts to pay off already for problem

Table 3 Computational costs of the algorithms applied to the DRE arising from Example 1 in
Section 5.1.1, for different problem sizes (Wall-clock time, seconds)

n 2500 5625 10000 15625 22500

System 1 F12F3 CPU 8.5 · 100 3.5 · 101 8.8 · 101 1.9 · 102 4.1 · 102

F12F3 GPU 6.2 · 100 1.5 · 101 2.7 · 101 5.0 · 101 8.8 · 101

F1F2F3 CPU 4.5 · 100 2.1 · 101 4.6 · 101 1.1 · 102 2.1 · 102

F1F2F3 GPU 5.4 · 100 1.2 · 101 2.0 · 101 3.1 · 101 5.0 · 101

F1F3F2 CPU 4.4 · 100 2.1 · 101 4.6 · 101 1.1 · 102 2.1 · 102

F1F3F2 GPU 4.9 · 100 1.1 · 101 1.9 · 101 2.9 · 101 4.9 · 101

System 2 F12F3 CPU 7.8 · 100 3.8 · 101 1.1 · 102 2.7 · 102 5.3 · 102

F12F3 GPU 4.8 · 100 9.8 · 100 1.6 · 101 2.6 · 101 4.0 · 101

F1F2F3 CPU 4.1 · 100 2.0 · 101 4.8 · 101 1.1 · 102 2.5 · 102

F1F2F3 GPU 3.9 · 100 8.2 · 100 1.3 · 101 2.0 · 101 2.9 · 101

F1F3F2 CPU 3.9 · 100 2.0 · 101 4.8 · 101 1.1 · 102 2.5 · 102

F1F3F2 GPU 3.5 · 100 7.6 · 100 1.2 · 101 1.9 · 101 2.7 · 101

Numerical Algorithms

size of matrix A × 104
0 0.5 1 1.5 2 2.5

ra
tio

0

2

4

6

8

10

12
F

12
F

4
 S

1

F
1
F

2
F

4
 S

1

F
1
F

4
F

2
 S

1

F
12

F
4
 S

2

F
1
F

2
F

4
 S

2

F
1
F

4
F

2
 S

2

size of matrix A × 104
0 0.5 1 1.5 2 2.5

ra
tio

0

2

4

6

8

10

12
F

12
F

3
F

4
 S

1

F
12

F
3
F

4
 S

2

Fig. 7 Relative computational costs of the algorithms for the generalized DLE (left) and the generalized
DRE (right) arising from Example 2 in Section 5.1.2, plotted versus the different problem sizes

sizes around n = 2500. For the largest test case n = 22500, we observe a speed-up of
a factor 4.7 on System 1 and a factor of 11.7 on System 2 for the quadrature rule. For
the splitting scheme, the speed-up is less but not by much. We note that these ratios
are higher than the theoretical numbers which one might expect, but fully in line with
the analysis in the previous section. We also remark here that the quadrature method
is clearly more efficient than the splitting scheme, since the former method produces
a much lower error than the latter while their computational costs are very similar.

A similar behavior can be seen in Fig. 6 (right), where we plot the GPU speed-up
of the splitting schemes applied to the arising DRE. The break-even point is again
around n = 2500, as seen in Table 3 which presents the raw data. For the largest
test case, we again observe a factor 4.7 speed-up for the GPU implementation of
the two-term splitting on System 1. On System 2, the corresponding number is 13.1.

Table 4 Computational costs of the algorithms applied to the generalized DLE arising from Example 2 in
Section 5.1.2, for different problem sizes (Wall-clock time, seconds)

n 2500 5625 10000 15625 22500

System 1 F12F4 CPU 9.3 · 100 3.6 · 101 8.3 · 101 2.1 · 102 4.4 · 102

F12F4 GPU 8.1 · 100 1.6 · 101 2.8 · 101 5.3 · 101 9.4 · 101

F1F2F4 CPU 7.7 · 100 3.0 · 101 6.5 · 101 1.6 · 102 3.2 · 102

F1F2F4 GPU 7.4 · 100 1.5 · 101 2.2 · 101 4.3 · 101 7.5 · 101

F1F4F2 CPU 8.5 · 100 3.2 · 101 7.1 · 101 1.8 · 102 3.7 · 102

F1F4F2 GPU 8.2 · 100 1.6 · 101 2.7 · 101 4.9 · 101 9.2 · 101

System 2 F12F4 CPU 9.2 · 100 4.0 · 101 1.0 · 102 2.3 · 102 5.0 · 102

F12F4 GPU 7.2 · 100 1.3 · 101 1.9 · 101 3.2 · 101 5.2 · 101

F1F2F4 CPU 6.7 · 100 3.0 · 101 7.1 · 101 1.8 · 102 3.6 · 102

F1F2F4 GPU 5.4 · 100 1.0 · 101 1.6 · 101 2.9 · 101 3.9 · 101

F1F4F2 CPU 7.4 · 100 3.3 · 101 8.3 · 101 1.9 · 102 4.4 · 102

F1F4F2 GPU 6.4 · 100 1.2 · 101 2.0 · 101 3.2 · 101 4.8 · 101

Numerical Algorithms

Table 5 Computational costs of the algorithms applied to the generalized DRE arising from Example 2 in
Section 5.1.2, for different problem sizes (Wall-clock time, seconds)

n 2500 5625 10000 15625 22500

System 1 F12F3F4 CPU 9.4 · 100 3.7 · 101 8.8 · 101 2.2 · 102 4.3 · 102

F12F3F4 GPU 8.0 · 100 1.7 · 101 2.9 · 101 5.5 · 101 9.7 · 101

System 2 F12F3F4 CPU 8.7 · 100 3.9 · 101 1.1 · 102 2.5 · 102 5.5 · 102

F12F3F4 GPU 6.6 · 100 1.3 · 101 1.9 · 101 3.2 · 101 4.9 · 101

Again, a speed-up of the implementation on the GPU is detected for these problems.
The factors for the three-term splittings are both about 4.2 on System 1 and about 9
on System 2, which means that all the methods perform better than what might be
expected at first glance, due to differently optimized underlying codebases.

We note that the fact that some of the schemes are faster than the others does not
mean that they are more efficient, since their errors are also different. By plotting the
errors in Fig. 2 against the computation times, one can observe that the three-term
schemes are most efficient for all error levels when Q is relatively small compared
to R−1, while the two-term splitting is more efficient otherwise. This also holds in
general for other problem sizes.

The GPU-based codes also exhibit better performance for the generalized matrix
equations, as seen in Fig. 7 and Tables 4 and 5. We consider here the four schemes
mentioned in Section 2 applied to the generalized DLE and DRE arising from Exam-
ple 2 in Section 5.1.2. The break-even point is here slightly lower, but the maximal
speed-up factors are similar to the previous examples.

Finally, we measure the computation times also for the two real-world examples.
The left plot in Fig. 8 shows the results of applying the DLE methods to Example 3 in
Section 5.1.3 for different problem sizes, and the right plot shows the DRE methods
applied to Example 4 in Section 5.1.4. Tables 6 and 7 contain the respective raw data.

size of matrix A
5000 10000 15000

ra
tio

0.5

1

1.5

2

2.5

F
12

 S
1

F
1
F

2
 S

1

F
12

 S
2

F
1
F

2
 S

2

size of matrix A 104
0 0.5 1 1.5 2

ra
tio

0

2

4

6

8

10

F
12

F
3
 S

1

F
1
F

2
F

3
 S

1

F
1
F

3
F

2
 S

1

F
12

F
3
 S

2

F
1
F

2
F

3
 S

2

F
1
F

3
F

2
 S

2

Fig. 8 Relative computational costs for Example 3 in Section 5.1.3 (left) and Example 4 in Section 5.1.4
(right). Due to time constraints, we could not test the largest problem size in Example 4 in Section 5.1.4
on System 2

Numerical Algorithms

Table 6 Computational costs of the algorithms applied to the DLE arising from Example 3 in
Section 5.1.3, for different problem sizes (Wall-clock time, seconds)

n 624 3900 7800 15600

System 1 F12 CPU 2.6 · 100 1.0 · 101 1.9 · 101 5.0 · 101

F12 GPU 3.5 · 100 7.3 · 100 1.1 · 101 2.1 · 101

F1F2 CPU 2.5 · 100 9.8 · 100 1.8 · 101 4.8 · 101

F1F2 GPU 3.3 · 100 6.9 · 100 1.1 · 101 2.0 · 101

System 2 F12 CPU 4.1 · 100 1.1 · 101 2.0 · 101 4.6 · 101

F12 GPU 4.1 · 100 8.9 · 100 1.3 · 101 2.2 · 101

F1F2 CPU 5.4 · 100 1.1 · 101 1.9 · 101 4.7 · 101

F1F2 GPU 5.5 · 100 8.0 · 100 1.1 · 101 2.1 · 101

The results are similar to the previous academic examples. In the DLE case,
the CPU and GPU costs are comparable at n = 624 but at n = 3900
the GPU is more efficient, and at n = 7800, we already observe a speed-
up of a factor 1.5. For the finest resolution, the speed-up is roughly a factor
2.4. The maximal speed-up is lower in this example, because the solution is of
a higher rank than in the academic examples. This requires more work in the
column compression step, which in turn performs SVD calculations. These are
harder to parallelize than the other main sub-functions. We note, however, that
as the problem dimension increases the solution rank increases only marginally.
This means that for large enough problems the column compression cost will
again be negligible, and the GPU speed-up will reach similar values as in

Table 7 Computational costs of the algorithms applied to the DRE arising from Example 4 in
Section 5.1.4, for different problem sizes. Due to time constraints, we could not test the largest problem
size on System 2 (wall-clock time, seconds)

n 371 1357 5177 20209

System 1 F12F3 CPU 3.2 · 101 3.1 · 102 2.7 · 103 9.2 · 104

F12F3 GPU 4.6 · 101 1.8 · 102 6.7 · 102 1.9 · 104

F1F2F3 CPU 3.4 · 101 3.1 · 102 2.6 · 103 7.9 · 104

F1F2F3 GPU 3.8 · 101 1.8 · 102 6.4 · 102 1.8 · 104

F1F3F2 CPU 3.4 · 101 3.2 · 102 2.6 · 103 7.5 · 104

F1F3F2 GPU 3.4 · 101 1.7 · 102 6.2 · 102 1.7 · 104

System 2 F12F3 CPU 4.5 · 101 3.4 · 102 2.9 · 103

F12F3 GPU 6.4 · 101 1.1 · 102 3.4 · 102

F1F2F3 CPU 3.7 · 101 3.5 · 102 2.8 · 103

F1F2F3 GPU 2.6 · 101 1.1 · 102 3.3 · 102

F1F3F2 CPU 3.5 · 101 3.4 · 102 2.7 · 103

F1F3F2 GPU 2.1 · 101 9.6 · 101 3.2 · 102

Numerical Algorithms

the academic examples. We still want to emphasize that for the current largest test
case the algorithm performs twice as good on the GPU as on the CPU, and this is
with essentially no changes to the code.

In the DRE case, only the first problem size yields comparable costs for the CPU
and GPU, and we observe speed-ups for all larger problem sizes. We obtain a speed-
up of 4 already for n = 5177 and 4.7 for the largest test case on System 1. Due to time
constraints, we only solve the first three problem sizes on System 2. For n = 5177,
the speed-up is already more than 8.3 for all schemes, and we expect the ratio to
level out similarly to what happens on System 1. As mentioned previously, even
higher speed-up are expected when MATLAB supports solving equation systems
with sparse system matrices and dense block right-hand sides.

6 Conclusions

We have considered several different splitting schemes based on Leja point interpola-
tion for the computation of matrix exponential actions. Since the matrix exponentials
act on skinny block matrices (the low-rank factors) rather than only vectors, we
expected that these computations would be highly parallelizable and that GPU accel-
eration would therefore be beneficial. The latter was verified by several numerical
experiments on two different systems. In the considered problems of academical
nature, the GPU code was faster than the pure CPU code by approximately a factor
3 already for matrices of size 10000 on System 1 and by a factor of 6 on System
2. This factor increases to over 4 and 10, respectively, for larger matrices of size
22500. The break-even point was around size 2500, which is well below what would
be considered large-scale today. In the tested real-world applications, the gains were
also in accordance with the more academic examples. As there is no difference in
the size of the numerical errors, this clearly shows that GPU acceleration can lead
to large gains in efficiency and should be considered for matrix equations of these
types. The efficiency could additionally be further increased by considering more
advanced parallelization techniques. An obvious such candidate is to investigate the
use of single-precision computations when the desired level of accuracy is low.

We have also presented comparisons of different splitting strategies, mainly inves-
tigating whether one should split off the constant term Q or not, and in which order
the subproblems should be solved. For the latter question, we observe that the order-
ing has minimal influence on the error, and we may thus choose the order such that
the computational cost is minimized. (For example, take the most expensive subprob-
lem as the “middle” term.) For the first question, we expected that it would not be
beneficial to split off Q, since the extra integral term which arises only has to be
approximated once. This was verified by our experiments, except in the case when
Q was relatively small—then, of course, the extra splitting error is similarly small.
We note that these results are for the autonomous case. When the matrices that define
the equations also depend on time, the situation likely changes, as the integral term
would need to be recomputed in each step. However, as the modified methods would
still rely on matrix exponential actions as their basic building blocks, we still expect
that GPU acceleration would significantly increase the efficiency.

Numerical Algorithms

Acknowledgements Open access funding provided by Max Planck Society. The authors would like to
thank the anonymous referees, whose critical and constructive comments greatly improved the manuscript.
We are also grateful to Peter Kandolf for his assistance with the original expleja code.

Funding information This study is supported by the Austrian Science Fund (FWF)—project id:P27926
and by a scholarship of the Vizerektorat für Forschung, University of Innsbruck.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Abou-Kandil, H., Freiling, G., Ionescu, V., Jank, G.: Matrix Riccati equations in control and systems
theory. Birkhäuser, Basel (2003)

2. Alonso-Mallo, I., Cano, B., Reguera, N.: Avoiding order reduction when integrating diffusion-reaction
boundary value problems with exponential splitting methods. J. Comput. Appl. Math. 357, 228–250
(2019)

3. Antoulas, A.C., Sorensen, D.C., Zhou, Y.: On the decay rate of Hankel singular values and related
issues. Syst. Cont. Lett. 46(5), 323–342 (2002)

4. Auer, N., Einkemmer, L., Kandolf, P., Ostermann, A.: Magnus integrators on multicore CPUs and
GPUs. Comput. Phys. Comm. 228, 115–122 (2018). https://doi.org/10.1016/j.cpc.2018.02.019

5. Auzinger, W., Koch, O., Thalhammer, M.: Defect-based local error estimators for high-order
splitting methods involving three linear operators. Numer. Algorithm. 70(1), 61–91 (2015).
https://doi.org/10.1007/s11075-014-9935-8

6. Başar, T., Bernhard, P.: H∞-optimal control and related minimax design problems. In: Sys-
tems & Control: Foundations & Applications. 2nd edn. Birkhäuser Boston, Inc., Boston (1995).
https://doi.org/10.1007/978-0-8176-4757-5. A dynamic game approach

7. Baker, J., Embree, M., Sabino, J.: Fast singular value decay for Lyapunov solutions with nonnormal
coefficients. SIAM. J. Matrix Anal. Appl. 36(2), 656–668 (2015). https://doi.org/10.1137/140993867

8. Bell, N., Garland, M.: Efficient sparse matrix-vector multiplication on CUDA. NVIDIA Technical
Report NVR-2008-004, NVIDIA Corporation (2008)

9. Benner, P., Breiten, T.: Low rank methods for a class of generalized Lyapunov equations and related
issues. Numer. Math. 124(3), 441–470 (2013). https://doi.org/10.1007/s00211-013-0521-0

10. Benner, P., Damm, T.: Lyapunov equations, energy functionals, and model order reduction of bilinear
and stochastic systems. SIAM. J. Control Optim. 49(2), 686–711 (2011)

11. Benner, P., Dufrechou, E., Ezzatti, P., Mena, H., Quintana-Ortı́, E.S., Remón, A.: Solving sparse dif-
ferential Riccati equations on hybrid CPU-GPU platforms. In: Gervasi, O., Murgante, B., Misra, S.,
Borruso, G., Torre, C.M., Rocha, A.M.A.C., Taniar, D., Apduhan, B.O., Stankova, E., Cuzzocrea,
A. (eds.) Computational Science and Its Applications – ICCSA 2017: 17th International Confer-
ence, Trieste, Proceedings, Part I, pp. 116–132. Springer International Publishing, Cham (2017).
https://doi.org/10.1007/978-3-319-62392-4 9

12. Benner, P., Ezzatti, P., Mena, H., Quintana-Ortı́, E.S., Remón, A.: Solving differential Riccati equa-
tions on multi-GPU platforms. In: Proceedings of 11th International Conference on Computational
and Mathematical Methods in Science and Engineering, pp. 178–188. CMMSE ’11, Benidorm (2011)

13. Benner, P., Ezzatti, P., Mena, H., Quintana-Ortı́, E.S., Remón, A.: Solving matrix equations on
multi-core and many-core architectures. Algorithms 6(4), 857–870 (2013). https://doi.org/10.3390/
a6040857

14. Benner, P., Mena, H.: Rosenbrock methods for solving Riccati differential equations. IEEE Trans.
Automat. Control 58(11), 2950–2956 (2013). https://doi.org/10.1109/TAC.2013.2258495

15. Benner, P., Mena, H.: Numerical solution of the infinite-dimensional LQR problem and the associ-
ated Riccati differential equations. J. Numer. Math. 26(1), 1–20 (2018). https://doi.org/10.1515/jnma-
2016-1039

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.cpc.2018.02.019
https://doi.org/10.1007/s11075-014-9935-8
https://doi.org/10.1007/978-0-8176-4757-5
https://doi.org/10.1137/140993867
https://doi.org/10.1007/s00211-013-0521-0
https://doi.org/10.1007/978-3-319-62392-4_9
https://doi.org/10.3390/a6040857
https://doi.org/10.3390/a6040857
https://doi.org/10.1109/TAC.2013.2258495
https://doi.org/10.1515/jnma-2016-1039
https://doi.org/10.1515/jnma-2016-1039

Numerical Algorithms

16. Benner, P., Ezzatti, P., Mena, H., Quintana-Ortı́, E.S., Remón, A.: Unleashing CPU-GPU accel-
eration for control theory applications. In: Caragiannis, I., Alexander, M., Badia, R.M., Can-
nataro, M., Costan, A., Danelutto, M., Desprez, F., Krammer, B., Sahuquillo, J., Scott, S.L.,
Weidendorfer, J. (eds.) Euro-Par 2012: parallel processing workshops - BDMC, CGWS, Het-
eroPar, HiBB, OMHI, Paraphrase, PROPER, Resilience, UCHPC, VHPC, Rhodes Islands, Greece.
Revised Selected Papers, Lecture Notes in Comput. Sci., vol. 7640, pp. 102–111. Springer (2012).
https://doi.org/10.1007/978-3-642-36949-0

17. Benner, P., Saak, J.: A semi-discretized heat transfer model for optimal cooling of steel profiles. In:
Benner, P., Mehrmann, V., Sorensen, D. (eds.) Dimension Reduction of Large-Scale Systems, Lect.
Notes Comput. Sci. Eng., vol. 45, pp. 353–356. Springer, Berlin (2005). https://doi.org/10.1007/3-
540-27909-1 19

18. Caliari, M., Kandolf, P., Ostermann, A., Rainer, S.: Comparison of software for computing the action
of the matrix exponential. BIT Numer. Math. 54(1), 113–128 (2014)

19. Caliari, M., Kandolf, P., Ostermann, A., Rainer, S.: The Leja method revisited: backward error
analysis for the matrix exponential. SIAM. J. Sci. Comput. 38(3), A1639–A1661 (2016)

20. Damm, T., Mena, H., Stillfjord, T.: Numerical solution of the finite horizon stochastic linear quadratic
control problem. Numer. Lin. Alg. Appl. (2017)

21. De Leo, M., Rial, D., Sánchez de la Vega, C.: High-order time-splitting methods for irreversible
equations. IMA, J. Numer. Anal. 36(4), 1842–1866 (2016). https://doi.org/10.1093/imanum/drv058

22. Einkemmer, L., Ostermann, A.: Exponential integrators on graphic processing units. In: 2013
International Conference on High Performance Computing Simulation (HPCS), pp. 490–496.
https://doi.org/10.1109/HPCSim.2013.6641458 (2013)

23. Einkemmer, L., Ostermann, A.: Overcoming order reduction in diffusion-reaction splitting.
Part 1: Dirichlet boundary conditions. SIAM J. Sci. Comput. 37(3), A1577–A1592 (2015).
https://doi.org/10.1137/140994204

24. Einkemmer, L., Ostermann, A.: Overcoming order reduction in diffusion-reaction splitting.
Part 2: Oblique boundary conditions. SIAM J. Sci. Comput. 38(6), A3741–A3757 (2016).
https://doi.org/10.1137/16M1056250

25. Farquhar, M.E., Moroney, T.J., Yang, Q., Turner, I.W.: GPU accelerated algorithms for computing
matrix function vector products with applications to exponential integrators and fractional diffusion.
SIAM J. Sci. Comput. 38(3), C127–C149 (2016). https://doi.org/10.1137/15M1021672

26. Goumas, G., Kourtis, K., Anastopoulos, N., Karakasis, V., Koziris, N.: Understanding the performance
of sparse matrix-vector multiplication. In: 16th Euromicro Conference on Parallel, Distributed and
Network-Based Processing (PDP 2008), pp. 283–292. https://doi.org/10.1109/PDP.2008.41 (2008)

27. Hansen, E., Ostermann, A.: High order splitting methods for analytic semigroups exist. BIT Numer.
Math. 49(3), 527–542 (2009). https://doi.org/10.1007/s10543-009-0236-x

28. Hansen, E., Stillfjord, T.: Convergence analysis for splitting of the abstract differential Riccati
equation. SIAM J. Numer. Anal. 52(6), 3128–3139 (2014). https://doi.org/10.1137/130935501

29. Hundsdorfer, W., Verwer, J.: Numerical solution of time-dependent advection-diffusion-reaction
equations Springer Series in Computational Mathematics, vol. 33. Springer, Berlin (2003).
https://doi.org/10.1007/978-3-662-09017-6

30. Ichikawa, A., Katayama, H.: Remarks on the time-varying H∞ Riccati equations. Syst. Cont. Lett.
37(5), 335–345 (1999)

31. Koskela, A., Mena, H.: Analysis of Krylov subspace approximation to large scale differential Riccati
equations. arXiv:1705.07507 (2017)

32. Lang, N.: Numerical methods for large-scale linear time-varying control systems and related
differential matrix equations. Dissertation, Technische Universität Chemnitz, Chemnitz (2017)

33. Lang, N., Mena, H., Saak, J.: On the benefits of the LDLT factorization for large-scale differential
matrix equation solvers. Linear Algebra Appl. 480, 44–71 (2015). https://doi.org/10.1016/j.laa.2015.
04.006

34. Mena, H., Ostermann, A., Pfurtscheller, L.M., Piazzola, C.: Numerical low-rank approximation of
matrix differential equations. J. Comput. Appl. Math. 340, 602–614 (2018)

35. Mena, H., Pfurtscheller, L.: An efficient SPDE approach for El Niño. Appl. Math. Comput. 352,
146–156 (2019). https://doi.org/10.1016/j.amc.2019.01.071

36. Nakatsukasa, Y.: Gerschgorin’s theorem for generalized eigenvalue problems in the Euclidean metric.
Math. Comp. 80(276), 2127–2142 (2011). https://doi.org/10.1090/S0025-5718-2011-02482-8

https://doi.org/10.1007/978-3-642-36949-0
https://doi.org/10.1007/3-540-27909-1_19
https://doi.org/10.1007/3-540-27909-1_19
https://doi.org/10.1093/imanum/drv058
https://doi.org/10.1109/HPCSim.2013.6641458
https://doi.org/10.1137/140994204
https://doi.org/10.1137/16M1056250
https://doi.org/10.1137/15M1021672
https://doi.org/10.1109/PDP.2008.41
https://doi.org/10.1007/s10543-009-0236-x
https://doi.org/10.1137/130935501
https://doi.org/10.1007/978-3-662-09017-6
http://arXiv.org/abs/1705.07507
https://doi.org/10.1016/j.laa.2015.04.006
https://doi.org/10.1016/j.laa.2015.04.006
https://doi.org/10.1016/j.amc.2019.01.071
https://doi.org/10.1090/S0025-5718-2011-02482-8

Numerical Algorithms

37. Nickolls, J., Buck, I., Garland, M., Skadron, K.: Scalable parallel programming with CUDA. Queue
6(2), 40–53 (2008). https://doi.org/10.1145/1365490.1365500

38. Penland, C., Sardeshmukh, P.: The optimal growth of tropical sea surface temperature anomalies. J.
Clim. 8, 1999–2024 (1995)

39. Penzl, T.: Eigenvalue decay bounds for solutions of Lyapunov equations: the symmetric case. Syst.
Cont. Lett. 40, 139–144 (2000). https://doi.org/10.1016/S0167-6911(00)00010-4

40. Petersen, I.R., Ugrinovskii, V.A., Savkin, A.V.: Robust Control Design using H∞ Methods. Springer,
London (2000)

41. Reese, J., Zaranek, S.: GPU programming in MATLAB. Mathworks News & Notes, pp. 22–5. The
MathWorks Inc, Natick (2012)

42. Saak, J.: Effiziente numerische Lösung eines Optimalsteuerungsproblems für die Abkühlung von
Stahlprofilen. Diplomarbeit, Fachbereich 3/Mathematik und Informatik, Universität Bremen, D-
28334 Bremen (2003)

43. Sorensen, D.C., Zhou, Y.: Bounds on eigenvalue decay rates and sensitivity of solutions to Lya-
punov equations. Tech. Rep. TR02-07, Dept. of Comp. Appl. Math. Rice University, Houston (2002).
Available online from https://scholarship.rice.edu/handle/1911/101987

44. Stillfjord, T.: Low-rank second-order splitting of large-scale differential Riccati equations. IEEE
Trans. Automat. Control 60(10), 2791–2796 (2015). https://doi.org/10.1109/TAC.2015.2398889

45. Stillfjord, T.: Adaptive high-order splitting schemes for large-scale differential Riccati equations.
Numer. Algorithms. https://doi.org/10.1007/s11075-017-0416-8 (2017)

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

https://doi.org/10.1145/1365490.1365500
https://doi.org/10.1016/S0167-6911(00)00010-4
https://scholarship.rice.edu/handle/1911/101987
https://doi.org/10.1109/TAC.2015.2398889
https://doi.org/10.1007/s11075-017-0416-8

	GPU acceleration of splitting schemes applied to differential matrix equations
	Abstract
	Introduction
	Splitting schemes
	Differential Lyapunov equations
	Differential Riccati equations
	Generalized Lyapunov equations
	Generalized Riccati equations

	Implementations
	GPU considerations
	Main routines and limiting factors
	Possible perfomance gains

	Numerical experiments
	Experiment descriptions
	Example 1
	Example 2
	Example 3
	Example 4

	Implementation verification
	Performance on main sub-functions
	Overall performance

	Conclusions
	References

