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Abstract A convergence analysis is presented for the implicit Euler and Lie split-
ting schemes when applied to nonlinear parabolic equations with delay. More pre-
cisely, we consider a vector field which is the sum of an unbounded dissipative op-
erator and a delay term, where both point delays and distributed delays fit into the
framework. Such equations are frequently encountered, e.g. in population dynamics.
The main theoretical result is that both schemes converge with an order (of at least)
q = 1/2, without any artificial regularity assumptions. We discuss implementation
details for the methods, and the convergence results are verified by numerical ex-
periments demonstrating both the correct order, as well as the efficiency gain of Lie
splitting as compared to the implicit Euler scheme.
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1 Introduction

Delay differential equations (DDEs) are equations which depend on the system state
at previous times. They have important applications in engineering and science. As a
prototypical example, we consider a model from population dynamics: The density
u(t,x) of a population at time t and location x in some habitat is modeled by the
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following parabolic DDE:

∂

∂ t
u(t,x) = ∇·

(
D∇u(t,x)

)
+g
(
u(t−1,x)

)
. (1.1)

The first term on the right-hand side represents the dispersal of the population through-
out the habitat and the second term models the increase due to births. Here, the de-
layed argument t−1 takes into account the average gestation period of the population
and the nonlinear function g models the population growth with respect to the popu-
lation density. Surveys of delay-dependent population dynamics can be found in [11,
13].

The diffusion constant D is often a function of the population density, e.g. com-
pare with the experimental study [14] on insect dispersal. This implies that the solu-
tion of (1.1) typically lacks higher order regularity in both time and space. To illus-
trate these features let D(u) = |∇u|r−2 and g = 0. Then equation (1.1) reduces to the
evolution of the r-Laplacian, and for suitable initial data the solution is given by the
closed expression [2] (see also [9, p.160]):

u(t,x) =
1

(t +1)λ

[
1−κ

( |x|
(t +1)λ

)r/(r−1)](r−1)/(r−2)

+
,

where λ = 1/(2r− 2), κ = λ 1/(r−1)(r− 2)/r and [·]+ = max{·,0}. Note that the
solution is not continuously differentiable and has compact support for all times t ≥ 0,
i.e. the propagation speed is finite, in contrast to the linear case. We refer to [9,15]
for further details regarding nonlinear parabolic equations.

Due to the lack of time-regularity it is not, in general, possible to prove that a time
discretization of the problem converges with an order greater than q= 1. Furthermore,
since there is a diffusion term present, the spatial discretization of the equation will
result in a stiff ODE system and therefore requires the usage of implicit schemes. Of
the few remaining numerical methods the implicit Euler scheme is then the natural
choice, but it is often computationally costly. An alternative is given by splitting
methods, where the flows related to the diffusion and delay terms are approximated
separately. This can dramatically reduce the computational cost.

The aim of this paper is to derive a new convergence analysis for the implicit Eu-
ler and Lie splitting schemes when applied to fully nonlinear equations of the same
structure as (1.1). Our approach is based on rewriting the parabolic DDE as an ab-
stract evolution equation in the spirit of [18] and then deriving a convergence analysis
by employing the theory of dissipative operators [1]. The schemes are readily appli-
cable to the abstract evolution equation, but quite some care needs to be taken when
discretizing the concrete parabolic DDE. We therefore also discuss the implementa-
tion details.

In the abstract setting of dissipative evolution equations, a convergence order q =
1/2 has been established in [8] for the implicit Euler scheme. This convergence rate
is in fact optimal for general dissipative vector fields, as observed by [16]. For general
time stepping schemes a Lax-type theorem is provided by [7], and a related result [6]
yields convergence of the Lie splitting under rather weak assumption on the abstract
equation. In the setting of linear evolution equations, convergence of order q = 1 for
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the Lie splitting may be proved using the techniques in [10]. In the DDE case, this
has been done in [4], where convergence orders are also proved in the semilinear
case under additional structural assumptions on the delay term and on the initial data.
Finally, a general survey of other approaches and numerical methods for DDEs can
be found in [5] and the references therein. See also [3,12].

An outline of our paper is as follows: In Section 2 we describe the problem class,
discuss the reformulation to an abstract evolution equation, define the two schemes
and discuss implementation details. In Section 3 we recapitulate some general the-
ory of dissipative operators and give the precise assumptions on the problem class.
What these assumptions mean for the abstract evolution setting is discussed in Sec-
tion 4, which also summarizes some basic results. The convergence analysis is given
in Section 5 and we conclude with two numerical experiments which confirm our
theoretical results in Section 6.

2 Time stepping schemes

Consider the equation

u̇(t) = f u(t)+gΦut , (u(0) ;u0) = (ζ (0) ;ζ ),

where u(t) belongs to the Hilbert space H, and the history segment ut : [−1,0]→H is
defined by ut(σ) = u(t +σ). The unbounded operator f is assumed to be dissipative,
as described later, and the delay operator is assumed to be an integral of the form

Φρ =
∫ 0

−1
ρ(σ)dη(σ),

with η : [−1,0]→R having bounded variation. Delay operators on this form include
distributed delays such as Φρ =

∫ 0
−1 ρ(σ)dσ and point delays such as Φρ = ρ(−1).

In order to handle both the history dependency and the inherent low regularity,
we reformulate the problem by introducing the auxiliary equation

u̇t =
d

dσ
ut , ut(0) = u(t).

With U(t) = (u(t) ;ut) this yields the evolution equation

U̇ = (F +G)U, U(0) = (ζ (0) ;ζ ),

where the operators F and G are given by

F =

(
f 0
0 0

)
and G =

(
0 gΦ

0 d
dσ

)
.

It is now possible to employ classic implicit time stepping schemes, and the proposed
separation of the vector field enables the use of splitting schemes. Due to the low
regularity we consider the first order implicit Euler scheme, where a single time step
is given by

(un ;ρn) = (I−h(F +G))−1(un−1 ;ρn−1),
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and the Lie splitting scheme, given by

(vn ;ϕn) = (I−hF)−1(I−hG)−1(vn−1 ;ϕn−1).

The initial conditions are the same in both schemes, (u0 ;ρ0) = (v0 ;ϕ0) = (ζ (0) ;ζ ),
and both un and vn approximate u(nh). These formal representations of the schemes
are the key to the error analysis, but some care needs to be taken in order to implement
them. We consider first the Lie splitting scheme.

As the action of (I−hF)−1 reduces to the action of (I−h f )−1 on the first com-
ponent of the argument, we proceed to investigate the action of (I−hG)−1. Let

(w ;ψ) = (I−hG)−1(u ;ρ),

with w = ψ(0). Then

w−hgΦψ = u and (2.1)
ψ−hψ

′ = ρ, (2.2)

where we can solve (2.2) by using the integrating factor e−σ/h and integrating from
σ to 0. This yields

ψ(σ) = eσ/hw+
∫ 0

σ

1
h

e(σ−s)/h
ρ(s)ds.

To shorten the notation, we introduce

θh(σ) =
∫ 0

σ

1
h

e(σ−s)/h
ρ(s)ds and kh =

∫ 0

−1
eσ/hdη(σ). (2.3)

Using θh we can then express ψ by

ψ(σ) = eσ/hw+θh(σ).

Since Φ is linear we have Φψ = khw+Φθh, and Equation (2.1) then becomes

w = u+hg(khw+Φθh) .

The computation of the n:th Lie step (vn ;ϕn) can now be implemented as in Algo-
rithm 1 and an illustration of the procedure is shown in Figure 2.1. We note that
from a numerical point of view, it is only the first component vn which is of practical
interest; the history segment ϕn is only an auxiliary variable.
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Fig. 2.1 The Lie splitting discretization of u̇(t) =−u(t)+u(t−1). The dashed line is the actual solution
while the solid lines are the history segments. We note how the numerical error makes the approximations
to u(t) and ut(0) drift away from each other as the simulation progresses.

Algorithm 1 (A1)
Input: (v0 ;ϕ0)

1. Compute kh;
2. for j = 1 . . .n do
3. Approximate θh(σ) =

∫ 0
σ

1
h e(σ−s)/hϕ j−1(s)ds;

4. Compute Φθh;
5. Approximate w by w = v j−1 +hg(khw+Φθh);
6. Compute ψ(σ) = eσ/hw+θh(σ);
7. Update v j by solving (I−h f )v j = w;
8. Update ϕ j = ψ;
9. end for

Output: (vn ;ϕn)

The steps (A1:3) and (A1:4) require some approximative representation of the
function θh. Due to the low regularity in the problem, first-order interpolation is suf-
ficient. The approximation required in (A1:5) can be done by fixed point iteration
if the step size h is small enough, as we will assume that g is Lipschitz continuous
with a moderate Lipschitz constant. Step (A1:7) typically requires the application of
a spatial discretization of I−h f .

Consider now the implicit Euler scheme. If (w ;ψ) = (I−h(F +G))−1(u ;ρ) with
w = ψ(0), the same reasoning as above leads to

(I−h f )w = u+hg(khw+Φθh) and ψ(σ) = eσ/hw+θh(σ).

Algorithm 2 summarizes the procedure for computing the implicit Euler approxima-
tion.
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Algorithm 2 (A2)
Input: (u0 ;ρ0)

1. Compute kh;
2. for j = 1 . . .n do
3. Approximate θh(σ) =

∫ 0
σ

1
h e(σ−s)/hρ j−1(s)ds;

4. Compute Φθh;
5. Approximate w by (I−h f )w = u j−1 +hg(khw+Φθh);
6. Compute ρ(σ) = eσ/hw+θh(σ);
7. Update u j = w;
8. Update ρ j = ρ;
9. end for

Output: (un ;ρn)

This is very similar to Algorithm 1 except for (A2:5). Due to the presence of the
unbounded f term it is not possible to use e.g. fixed point iteration here, while one
may do so in (A1:5). This observation motivates the use of splitting in the semilinear
case, since then also (A1:7) can be done very efficiently by tailored fast linear solvers
for (I − h f )v = w. Further motivation for splitting arise from the case when g is
a non-local operator, such as g(u)(x) =

∫
Ω

k(x,s)u(s)ds. Then (A2:5) increases in
complexity for the implicit Euler scheme while the Lie splitting with fixed point
iteration is largely unaffected.

3 Assumptions

We now state the precise assumptions on the operators f , g and Φ in the equation

u̇(t) = f u(t)+gΦut , (u(0) ;u0) = (ζ (0) ;ζ ). (3.1)

First, we recall the notions of Lipschitz continuity and m-dissipativity. Let X and Y
be Banach spaces with norms ‖·‖X and ‖·‖Y , respectively.

Definition 3.1 Let E : D (E) ⊂ X → Y be an arbitrary operator. The Lipschitz con-
stant LX ,Y [E] is defined by

LX ,Y [E] = sup
u,v∈D(E)

u6=v

‖Eu−Ev‖Y
‖u− v‖X

.

We say that E is Lipschitz continuous from X to Y if LX ,Y [E]< ∞. If X = Y we write
LX [E] = LX ,X [E].

Definition 3.2 The operator E : D (E)⊂ X→ X is m-dissipative if there exists a con-
stant M[E] ∈ [0,∞) such that for all h ∈ (0,1/M[E]) the operator I−hE is surjective,
i.e. R (I−hE) = X , and

‖(I−hE)u− (I−hE)v‖X ≥ (1−hM[E])‖u− v‖X , for all u,v ∈D (E) .
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Assumption 1 The operator f : D ( f ) ⊂ H → H is m-dissipative with M[ f ] = 0.
Furthermore, f is densely defined, i.e. D ( f ) = H.

Example 3.1 Consider a bounded domain Ω with sufficiently regular boundary, and
homogeneous Dirichlet boundary conditions. Then the r-Laplacian ∇ · (|∇u|r−2∇u)
with r ≥ 2 on L2(Ω) is m-dissipative. The porous medium operator ∆(|u|r−1u) with
r≥ 1 is m-dissipative on H−1(Ω). See e.g. [1, Chapters 2 and 3], [15, Chapters 3 and
4] and [17, Chapter 10] for proofs of these assertions, as well as further examples.

We will let the delay operator Φ have one of two different forms. The first case
handles distributed delays such as Φρ =

∫ 0
−1 ρ(σ)dσ while the second case treats

point delays such as Φρ = ρ(−1). To be able to apply the same analysis, we will in
both cases write the delay operator as the integral

Φρ =
∫ 0

−1
ρ(σ)dη(σ),

where we place two different requirements on η .

Assumption 2

Case 1: The function η : [−1,0]→ R is given by

η(σ) =
∫

σ

−1
ξ (s)ds,

where ξ ∈ L∞(−1,0).

Case 2: The function η : [−1,0]→ R is of bounded variation, limσ→−1 η(σ) 6= 0
and η(−1) = 0.

Example 3.2 In the first case, Φρ =
∫ 0
−1 ξ (s)ρ(s)ds, and Φ is Lipschitz continuous

from Lp(−1,0;H) to H for all 1 ≤ p < ∞ with its Lipschitz constant bounded by
‖ξ‖Lp/(p−1)(−1,0). In the second case, Φ is only defined on a subspace of Lp(−1,0;H)

and no longer Lipschitz continuous. An example of such a delay operator is the point
delay Φρ = ρ(−1), given by taking η = χ(−1,0], the characteristic function of the
interval (−1,0]. Note, that for the sake of simplicity, we only consider real-valued
functions η , but the theory can be extended to cover the case when η(σ) : H→ H is
a Lipschitz continuous operator [18, Section 4].

Assumption 3 The operator g : H → H is Lipschitz continuous with Lipschitz con-
stant LH [g]≤ 1 and g(0) = 0.

The properties g(0) = 0 and LH [g] ≤ 1 are only assumed for the sake of simplicity.
A non-zero g(0) can always be shifted into f . If LH [g] > 1 then one can instead
work with ĝu = g(u/L[g]) if η is also rescaled as η̂ = L[g]η . None of these changes
have any effect on the main result. A locally Lipschitz continuous g also fits into the
framework, as long as the exact solution stays close enough to the initial value.
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4 Abstract evolution equation

Given a specific choice of η , and thereby a delay operator Φ , a possible setting for
the problem at hand is the Banach space X given by

X = H×Lp(−1,0;H;τ),

where 1≤ p < ∞ determines the class of initial history segments that can be consid-
ered. The norm on X is given by

‖(u ;ρ)‖X =
(
‖u‖p

H +
∫ 0

−1
‖ρ(σ)‖p

Hτ(σ)dσ

)1/p
.

For distributed delays (Assumption 2, Case 1) we can take the weight τ ≡ 1. However,
when e.g. considering point delays (Assumption 2, Case 2), τ ≡ 1 does not yield
dissipative operators [18, p. 76]. Instead, we let τ be the variation of η , i.e.

τ(σ) =
∫

σ

−1
|dη |.

We note that τ is a positive, increasing and bounded function. Because of the jump
discontinuity in η at σ =−1 we have that limσ→−1 τ(σ)> 0, i.e. also 1/τ is bounded.
Finally, to move between the space X and its components we introduce the projections
P1(u ;ρ) = u and P2(u ;ρ) = ρ .

The operators F and G discussed in Section 2 can now be properly defined as

F =

(
f 0
0 0

)
and G =

(
0 gΦ

0 d
dσ

)
,

with the domains

D (F) = D ( f )×Lp(−1,0;H;τ),

D (G) =
{
(u ;ρ) ∈ X ; ρ ∈W 1,p(−1,0;H;τ),u = ρ(0)

}
,

yielding the following abstract evolution equation on X :

U̇ = (F +G)U, U(0) = (ζ (0) ;ζ ). (4.1)

We collect a few results regarding the operators F , G and F +G before proceeding to
the convergence analysis.

Lemma 4.1 Under Assumption 1, the operator F is m-dissipative on X with M[F ] = 0.

Proof This follows by inspection.

As for G and F +G, Webb [18, Propositions 3.1, 3.2, 4.1 and 4.2] has proven the
following:
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Lemma 4.2 Let Assumptions 1, 3 and 2 be satisfied. Then the operators G and F+G,
with D (F +G) = D (F)∩D (G), are both m-dissipative on X with

M[G] = M[F +G]≤M :=

{
1/p+‖ξ‖L∞(−1,0), (Case 1)
τ(0), (Case 2).

The following lemma is a direct consequence of Definition 3.2:

Lemma 4.3 If E : D (E) ⊂ X → X is m-dissipative then the resolvent (I− hE)−1 :
X→D (E)⊂ X is Lipschitz continuous with LX [(I−hE)−1]≤ 1/(1−hM[E]) for all
h ∈ (0,1/M[E]).

Thus the time stepping operators (I−hF)−1(I−hG)−1 and (I−h(F+G))−1 are both
Lipschitz continuous. Further, there exists a unique mild solution U to the evolution
equation (4.1) for every U(0) ∈ D (F +G). The related solution operator is given
by a nonlinear semigroup {SF+G(t)}t≥0, where U(t) = SF+G(t)U(0). The nonlinear
operator SF+G(t) is invariant over the closure of D (F +G) and can be characterized
by the limit

SF+G(t)U(0) = lim
n→∞

(
I− t

n
(F +G)

)−n
U(0).

See e.g. [1, Chapters 4] and [8] for proofs of these claims. Finally, we also know that
the first component of SF+G(t)U(0) actually satisfies the original equation (3.1) for
sufficiently smooth initial conditions, as per the following lemma [18, Proposition
5.8]:

Lemma 4.4 Let Assumptions 1, 3 and 2 be valid. Further assume that p≥ 2, ζ (0) ∈
D ( f ) and ζ ∈W 1,p(−1,0;H;τ). Then the function u(t) given by

u(t) = P1SF+G(t)(ζ (0) ;ζ )

if t ≥ 0 and ζ (t) if t ∈ [−1,0) satisfies (3.1) for almost all t ≥ 0.

5 Convergence

Let us introduce the following abbreviations for the time stepping operators related
to the implicit Euler and Lie splitting schemes:

Rh = (I−h(F +G))−1, Th = (I−hF)−1(I−hG)−1.

Given the initial history segment ζ , the schemes are then given by

(un ;ρn) = Rn
h(ζ (0) ;ζ ) and (vn ;ϕn) = T n

h (ζ (0) ;ζ ),

respectively, for n = 0,1,2, . . ..
The work needed to state the delay differential equation as an abstract evolution

equation on a specific space X now pays off, as we can apply the result of [8] to get
a convergence order for the implicit Euler scheme. In the rest of this section we will
make frequent use of the parameter M defined in Lemma 4.2, and C will denote a
generic positive constant which assumes different values at different occurences.
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Theorem 5.1 Let Assumptions 1, 3 and 2 be satisfied and denote by u(t) the so-
lution to (3.1). Further, let the step size h satisfy 0 < hM ≤ 1/2. If p ≥ 2, ζ ∈
W 1,p(−1,0;H;τ) and ζ (0) ∈D ( f ), then

‖un−u(nh)‖H ≤Ch1/2‖(F +G)(ζ (0) ;ζ )‖X , 0≤ nh≤ T,

where the constant C depends on T but not on n or h.

Proof This follows from Lemma 4.4 and the proof of [8, Theorem 1].

We note that in many cases the order of convergence will actually be q = 1, for
example when H =Rd , but one can also find examples having only order q= 1/2; see
e.g. [16]. There is currently no general framework for analysing when convergence
orders q > 1/2 are to be expected.

The rest of this section is devoted to a similar theorem for the Lie splitting scheme.

Theorem 5.2 Let Assumptions 1, 3 and 2 be satisfied and denote by u(t) the so-
lution to (3.1). Further, let the step size h satisfy 0 < hM ≤ 1/2. If p ≥ 2, ζ ∈
W 1,p(−1,0;H;τ) and ζ (0) ∈D ( f ), then

‖vn−u(nh)‖H ≤C(h+h1/2 +h1−1/p)
(
‖(F +G)(ζ (0) ;ζ )‖X +‖(ζ (0) ;ζ )‖X

)
,

where 0≤ nh≤ T and the constant C depends on T but not on n or h.

Proof As
‖vn−u(nh)‖H ≤ ‖vn−un‖H +‖un−u(nh)‖H ,

where the second term can be bounded as in Theorem 5.1, the proof will be based
on showing that the Lie splitting approximation is sufficiently close to the implicit
Euler approximation. Even though we are only interested in the first component, the
analysis needs to be performed in the full space. However, the norm with which we
measure the history segments is of less importance. Alongside the space X we thus
consider the space Y = H×L1(−1,0;H;τ), where

‖(u ;ρ)‖Y = ‖u‖H +
∫ 0

−1
‖ρ(σ)‖Hτ(σ)dσ .

Clearly, X ⊂Y and ‖(u ;ρ)‖Y ≤C‖(u ;ρ)‖X for all (u ;ρ)∈X . Further, due to Lemma 4.2
and Lemma 4.3 both LX [Th] and LY [Th] are bounded by 1/(1−hM).

To shorten the notation we introduce Z = (ζ (0) ;ζ ) ∈D (F +G)⊂ X . Then

‖vn−un‖H = ‖P1 (T n
h Z−Rn

hZ)‖H ≤ ‖Rn
hZ−T n

h Z‖Y .

Expanding the term ‖Rn
hZ−T n

h Z‖Y in a telescopic sum leads to

‖Rn
hZ−T n

h Z‖Y ≤
n

∑
j=1
‖T n− j

h R j
hZ−T n− j+1

h R j−1
h Z‖Y

≤
n

∑
j=1

LY [Th]
n− jLY [(I−hF)−1]‖

(
(I−hF)Rh− (I−hG)−1)R j−1

h Z‖Y

≤C
n

∑
j=1
‖
(
(I−hF)Rh− (I−hG)−1)R j−1

h Z‖Y ,
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where the last inequality follows as

LY [Th]
j ≤ (1−hM)− j ≤ e2nhM (5.1)

when hM ≤ 1/2 for all 0≤ j ≤ n. The operator (I−hF)Rh− (I−hG)−1 is indepen-
dent of j, and we can extract an h from it by the equality

(I−hF)Rh− (I−hG)−1 = (hG+ I−h(F +G))Rh− (I−hG)−1

= hGRh + I− (I−hG)−1

= h(GRh−G(I−hG)−1).

This h compensates for the n terms of the sum, hence any further powers of h which
we can extract from (GRh−G(I− hG)−1)R j−1

h yields the distance between the Lie
splitting and implicit Euler approximations. We have, in fact, the following bound for
any U ∈ X :

‖(GRh−G(I−hG)−1)U‖Y ≤C
(
‖RhU−U‖X +(h+h1−1/p)‖U‖X

)
,

but since the proof is somewhat technical we defer this result to Lemma 5.1. Setting
U = R j−1

h Z with 1≤ j ≤ n in the above inequality yields the terms

‖R j
hZ−R j−1

h Z‖X ≤ LX [R
j−1
h ]‖RhZ−Z‖X = LX [R

j−1
h ]‖RhZ−Rh(I−h(F +G))Z‖X

≤ hLX [Rh]
j‖(F +G)Z‖X ≤ he2nhM‖(F +G)Z‖X ,

by the same reasoning as in (5.1), and

‖R j−1
h Z‖X ≤ ‖Z‖X +

j−1

∑
k=1
‖Rk

hZ−Rk−1
h Z‖X ≤ ‖Z‖X +nhe2nhM‖(F +G)Z‖X .

Thus, combining all the above inequalities finally yields

‖Rn
hZ−T n

h Z‖Y ≤Ch
n

∑
j=1
‖
(
GRh−G(I−hG)−1)R j−1

h Z‖Y

≤Ch
n

∑
j=1
‖R j

hZ−R j−1
h Z‖X +(h+h1−1/p)‖R j−1

h Z‖X

≤Ch
n

∑
j=1

h‖(F +G)Z‖X +(h+h1−1/p)
(
‖(F +G)Z‖X +‖Z‖X

)
≤C(h+h1−1/p)

(
‖(F +G)Z‖X +‖Z‖X

)
.

This gives the desired bound. ut

Lemma 5.1 Let U ∈ X and suppose that all the assumptions in Theorem 5.2 hold.
Then, with Y as in Theorem 5.2,

‖(GRh−G(I−hG)−1)U‖Y ≤C
(
‖RhU−U‖X +(h+h1−1/p)‖U‖X

)
,

where C is independent of h.



12 Eskil Hansen, Tony Stillfjord

Proof Assume that U = (u ;ρ) ∈ X . Let (v ;ϕ) = (I − hG)−1(u ;ρ) and (w ;ψ) =
Rh(u ;ρ). Furthermore, let z = khv+Φθh with kh and θh defined as in (2.3). Then by
the discussion in Section 2 we have that

ϕ = σ 7→ eσ/h(u+hgz)+θh(σ) and

ψ = σ 7→ eσ/hw+θh(σ).

With this in place, we have the representation

P1(GRh−G(I−hG)−1)U = gΦ(σ 7→ eσ/hw+θh(σ))

−gΦ(σ 7→ eσ/h(u+hgz)+θh(σ)) and

P2(GRh−G(I−hG)−1)U = σ 7→ 1
h

eσ/h(w−u−hgz).

Hence, we obtain the inequality

‖(GRh−G(I−hG)−1)U‖Y ≤ LH [g]‖
∫ 0

−1
eσ/h(w−u−hgz)dη(σ)‖H

+
∫ 0

−1
‖1

h
eσ/h(w−u−hgz)‖Hτ(σ)dσ

≤ (LH [g]|kh|+ rh)‖w−u−hgz‖H ,

where |kh| and

rh =
∫ 0

−1

1
h

eσ/h
τ(σ)dσ ≤ τ(0)

∫ 0

−1

1
h

eσ/hdσ = τ(0)
(

1− e−1/h
)

are both uniformly bounded by τ(0) for all h > 0. Now,

‖w−u−hgz‖H ≤ ‖P1(RhU−U)‖H +hLH [g]‖z‖H

≤ ‖RhU−U‖X +hLH [g]
(
|kh|‖P1(I−hG)−1U‖H +‖Φθh‖H

)
≤ ‖RhU−U‖X +hLH [g]|kh|LX [(I−hG)−1]‖U‖X +hLH [g]‖Φθh‖H ,

since g(0) = 0 and (I−hG)−10 = 0. Further,

‖Φθh‖H = ‖
∫ 0

−1

∫ 0

σ

1
h

e(σ−s)/h
ρ(s)dsdη(σ)‖H

≤
∫ 0

−1

∫ 0

σ

1
h

e(σ−s)/h‖ρ(s)‖Hds |dη |(σ).

We can bound the inner integral by Hölder’s inequality. With q > 1 such that 1/q+
1/p = 1 we have∫ 0

σ

1
h

e(σ−s)/h‖ρ(s)‖Hds≤ 1
h

(∫ 0

σ

eq(σ−s)/hds
)1/q(∫ 0

σ

‖ρ(s)‖p
Hds
)1/p

≤ 1
h

(
h
q
− h

q
eqσ/h

)1/q

‖ρ‖Lp(−1,0;H)

≤Ch1/q−1‖ρ‖Lp(−1,0;H;τ)

≤Ch−1/p‖U‖X ,
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where we have used the fact that 1/τ is bounded in the third inequality; see Section 4.
Since h−1/p‖U‖X does not depend on σ we obtain that

‖Φθh‖H ≤Ch−1/p‖U‖X .

Summarizing, we thus get

‖(GRh−G(I−hG)−1)U‖Y ≤C
(
‖RhU−U‖X +(h+h1−1/p)‖U‖X

)
,

which concludes the proof. ut

6 Numerical experiments

In order to verify our results, we have performed two numerical experiments.

Example 6.1 Consider first the equation

u̇ = cdiff∆ru+ cadv
d
dx

u+ cdelaygΦut , (6.1)

on the one-dimensional domain Ω = (0,1) with homogeneous Dirichlet boundary
conditions. The operators g and Φ are given by gu = u2/(1+u2) and

Φut = cput(−1)+ cd

∫ 0

−1
ut(σ)dσ .

This resembles the population dynamics model (1.1) from the introduction, where a
distributed delay has been added as well as an advection term, to make the solution
more interesting. We choose the parameters cdiff = 0.01, cadv = 0.35, cdelay = 1.5,
cp = 0.1 and cd = 4. Note that the operator f =∆r+d/dx is m-dissipative and densely
defined on L2(Ω), see e.g. [19, Chapter 26], and clearly g(u) = u2/(1+u2) is Lips-
chitz continuous. Further, η(σ) = cpχ(−1,0](σ)+ cd(σ +1) yields the desired delay
operator Φ . Assumptions 1, 3 and 2 (Case 2) are therefore valid.

We take r = 9.5 which makes the equation very stiff. We discretize the diffusion
and advection operator with standard second order finite differences and Nx = 501
points in space. Since the methods are only of at most order q = 1 we represent the
history segments ρn and ϕn by linear interpolation of Nh vectors, where we take Nh
to be the same as the number of time steps on [0,1]. The initial condition is a scaled
and shifted Barenblatt solution,

ζ (0) = x 7→
[

1− 1
171/8.5 |100(x−7/8)|9.5/8.5

]8.5/7.5

+

and the initial history segment is given by ζ (σ) = Λ(σ)ζ (0). Here Λ(t) is 1 in
the intervals [−1,−0.9] and [−0.5,−0.4], zero in [−0.8,−0.6] and [−0.3,−0.1] and
connected linearly in between.

The integration is performed up to the final time t = nh = 1.5, using various num-
bers of time steps n in the range 26 to 210, and a reference solution is computed using
the implicit Euler method with 212 time steps. Figure 6.1 (left) shows the resulting
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Fig. 6.1 Left: The L2(Ω) errors corresponding to different step sizes h when approximating Equation (6.1)
using implicit Euler or Lie splitting. We see that both methods are of order q = 1. Right: The L2(Ω) errors
when approximating (6.2) using implicit Euler or Lie splitting, plotted against the computation time. We
see that the Lie splitting is more efficient than implicit Euler, with the gain depending on the accuracy
level.

errors, measured in the discrete L2(Ω) norm, for both the implicit Euler and the Lie
splitting scheme. We observe that they are both of order q = 1, in line with Theo-
rems 5.1 and 5.2. We also note that the errors are roughly of the same size, i.e. little
accuracy is lost when employing the less costly splitting procedure.

Example 6.2 As a second example, consider the following semilinear equation:

u̇ = cdiff∆u+ cdelaygΦut , (6.2)

on the two-dimensional domain Ω = (0,2π)2 with periodic boundary conditions.
We let g and Φ have the same form as in Example 6.1 and choose the coefficients
cdiff = 1, cdelay = 1.5, cp = 1 and cd = 2. For the implicit Euler method, we discretize
the Laplacian by standard second-order finite differences and employ Newton itera-
tion for step (A2:5). For the corresponding step (A1:5) of the Lie splitting scheme,
we instead use fixed point iteration, and in step (A1:7) the action of (I− h f )−1 is
computed by FFT. In both cases we use Nx = Ny = 256 points in either space dimen-
sion, represent the history segments ρn and ϕn as in Example 6.1 and integrate up to
t = 1.5. Finally, the initial condition is given by

ζ (0)(x,y) = e−
(
(x−π)2+(y−π)2

)
,

and the initial history segment is given by ζ (σ) = Λ(σ)ζ (0) with the same Λ as in
Example 6.1.

The order of convergence q is again close to 1 for both methods. We omit the plot
of this and consider instead the efficiency plot in Figure 6.1 (right). This shows the
global errors (measured in the discrete L2(Ω) norm) plotted against the computation
time. We can see that for any given error level, the cost of the Lie splitting scheme is
less than that of the implicit Euler method. For large step sizes, we see an improve-
ment with a factor of 30− 50, while for smaller step sizes the cost approaches that
of implicit Euler. This confluence is mainly due to the fact that for small step sizes
the computation of θh is the dominating factor in both methods. The efficiency gain
could be increased by further optimizing this part of the code.
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3. Bátkai, A., Csomós, P., Farkas, B.: Operator splitting for nonautonomous delay equations. Comput.
Math. Appl. 65, 315–324 (2013)
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