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Abstract. We consider a system of equations that model the temperature,
electric potential and deformation of a thermoviscoelastic body. A typical
application is a thermistor; an electrical component that can be used e.g.
as a surge protector, temperature sensor or for very precise positioning. We
introduce a full discretization based on standard �nite elements in space and
a semi-implicit Euler-type method in time. For this method we prove optimal
convergence orders, i.e. second-order in space and �rst-order in time. The
theoretical results are veri�ed by several numerical experiments in two and
three dimensions.

1. Introduction

Consider the following system of coupled equations:

θ̇ = ∆θ + σ(θ)|∇φ|2 −M : ε(u̇), (1.1)

0 = ∇ ·
(
σ(θ)∇φ

)
, (1.2)

ü = ∇ ·
(
Aε(u̇) + Bε(u)−Mθ

)
+ f, (1.3)

with initial conditions

θ(0, x) = θ0(x), u(0, x) = u0(x) and u̇(0, x) = v0(x),

over the convex polygonal or polyhedral domain Ω ⊂ Rd with d ≤ 3. Together with
appropriate boundary conditions, to be speci�ed later, these equations describe
the evolution of the temperature θ, electric potential φ and deformation u of a
conducting body. Here A, B and M are constant tensors, describing the viscosity,
elasticity and thermal expansion of the body. The vector f consists of external
forces and σ(θ) denotes the electrical conductivity, which here depends on the
temperature. In addition, we have used the notation

ε(u) =
1

2

(
∇u+ (∇u)T

)
for the linearized strain tensor and : for the Frobenius inner product.

The coupling of electricity and temperature through (1.1)�(1.2) is commonly
known as Joule heating and is typically used to model thermistors, see e.g. [5, 8].
These are electrical components used for example as surge protectors or temperature
sensors. The inclusion of thermoviscoelastic e�ects through (1.3) allows us to also
model their use as actuators on the micro-scale, cf. [15].
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We note that the Joule heating problem, both stationary and time-dependent,
has been considered extensively in di�erent contexts. For discussions on existence
and uniqueness, see e.g. [2, 5, 6, 7, 8, 16, 17, 18, 27] and the references therein.
For the fully coupled, deformable problem the literature is less extensive. We refer
mainly to [19] for the non-degenerate case that we consider here, with σ ≥ σmin > 0.
See also [26] for the degenerate case where σ = 0 is allowed; this requires a more
generalized solution concept.

However, to our knowledge there exists no numerical analysis for methods ap-
plied to the fully coupled case. Many authors have analyzed methods for similar
problems. For example, [11] considers the quasi-static version where the ü-term is
ignored, [1], [10] and [20] considers the non-deformable case, [12, 13] treat the purely
thermoviscoelastic case (no φ) with nonlinear constituent law, etc. Additionally, in
the deformable case a common theme seems to be suboptimal convergence orders,
i.e. errors of the form O(h+ k) instead of O(h2 + k).

The main contribution of this article is therefore an error analysis for a fully
discrete discretization applied to the problem (1.1)�(1.3), which shows optimal con-
vergence orders in both time and space. For the spatial discretization we consider
standard �nite elements, and for the temporal discretization a semi-implicit Euler-
type method. Our approach also allows us to analyze e.g. the implicit Euler method,
but the semi-implicit method bene�ts from a greatly decreased computational cost
while the errors are comparable.

The central idea of our proof is to bound the errors in φ and u̇ in terms of the error
in θ, in the spirit of [10] and [21]. The latter error then ful�lls an equation similar
to (1.1), to which we may apply a Grönwall inequality after properly handling the
quadratic potential term. We note that we avoid any time step restrictions of the
form k ≤ hd/r by performing the analysis in two steps, where the �rst considers only
the discretization in time, cf. [21]. Finally, in order to produce the u̇ error bound,
we extend the concept of Ritz-Volterra projections for damped wave equations
(see [22]) to the discrete and vector-valued viscoelasticity case.

For simplicity, we consider Dirichlet boundary conditions,

θ(t, x) = 0, φ(t, x) = φb(t, x) and u(t, x) = 0

for t ∈ [0, T ] and x ∈ ∂Ω. This is a simpli�ed case of the ideal situation with an
arbitrary polygon and mixed boundary conditions, corresponding to where the body
is clamped and insulated. As is well known (see e.g. [14]) the solutions to such a
problem would typically su�er from a lack of regularity in the vicinity of re-entrant
corners and boundary condition transitions, which leads to suboptimal convergence
orders for �nite-element based numerical methods. We therefore restrict ourselves
to the simpli�ed model, and will indicate possible generalizations by our numerical
experiments.

A brief outline of the article is as follows. In Section 2 we write the problem
on weak form and discretize it in both time and space. The assumptions on the
data and solutions to the continuous problem are given in Section 3, where we also
perform the error analysis. In Subsection 3.1, the time-discrete system is shown to
be �rst-order convergent, and then the full discretization is shown to be second-
order convergent to the time-discrete system in Subsection 3.2. These results are
con�rmed by the numerical experiments presented in Section 4, and conclusions
and future work is summarized in Section 5.
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2. Weak formulation and discretization

In order to present a weak formulation of the problem, we introduce the spaces

V := H1
0 (Ω) ⊂ L2(Ω), and V := H1

0 (Ω)d ⊂ L2(Ω)d =: L2(Ω)

as well as the space of second-order symmetric tensors,

Q = {ξ = (ξij)
d
i,j=1 ⊂ L2(Ω)d×d ; ξji = ξij , 1 ≤ i, j ≤ d}.

The idea here is that θ and φ − φb belong to V , u ∈ V and ε(u) ∈ Q. On Q, we
have the inner product

(ξ, ζ)Q :=

∫
Ω

ξ(x) : ζ(x) dx =

d∑
i,j=1

(ξij , ζij)L2(Ω).

which gives rise to the norm ‖·‖Q. To simplify some notation, we use the inner
product

(u, v)V = (ε(u), ε(v))Q
on V instead of the usual one. The norm ‖·‖V induced by this inner product is
equivalent to ‖·‖H1(Ω)d by Korn's inequality, see e.g. [9, Chapter III, Theorems 3.1,
3.3] and [24]. We will on several occasions make use also of the norm ‖·‖B, which
arises from the elasticity operator through

‖u‖2B = (Bε(u), ε(u)) ,

as well as the norm ‖·‖A+kB de�ned analogously for a small positive constant k.
Under Assumption 3.1 in the next section, both of these norms are equivalent to
the V -norm. In the following, we will omit the speci�cation of Ω and simply write
L2 or L2. Additionally, the L2- and L2-norms will both simply be denoted by ‖·‖
and the corresponding inner products by (·, ·), where no confusion can arise.

By multiplying the equations (1.1), (1.2) with the test function χ ∈ V , Equa-
tion (1.3) with χ ∈ V and then using Green's formula combined with the identity
(ε(u),∇v) = (ε(u), ε(v)), we get(

θ̇, χ
)

+ (∇θ,∇χ) =
(
σ(θ)|∇φ|2, χ

)
− (M : ε(u̇), χ) , (2.1)

(σ(θ)∇φ,∇χ) = 0, (2.2)

(ü,χ) + (Aε(u̇) + Bε(u), ε(χ))Q = (Mθ, ε(χ))Q + (f,χ) , (2.3)

for all χ ∈ V and χ ∈ V , respectively. Note that we have omitted the time
parameter here and in the original equation; both are supposed to hold for all
times t ∈ (0, T ] for a given T .

We now discretize the time interval [0, T ] using a constant temporal step size
k, which results in the grid tn = nk with n = 1, 2, . . . , N and Nk = T . We will
abbreviate function evaluations at these times by sub-scripts, so that

θn = θ(tn), φn = φ(tn), un = u(tn) and fn = f(tn).

The approximations of these solution values should belong to the same spaces as in
the continuous case, and we will denote them by capital letters and superscripts:

Θn ≈ θn, Φn ≈ φn and Un ≈ un.
Additionally, we denote by Dt the �rst-order backward di�erence quotient, i.e.

Dt Θn =
Θn −Θn−1

k
.
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With this notation given, we now consider the following semi-implicit temporal
discretization of Equations (1.1)�(1.3),

Dt Θn = ∆Θn + σ(Θn−1)|∇Φn−1|2 −M : ε(Dt U
n−1), (2.4)

0 = ∇ ·
(
σ(Θn)∇Φn

)
, (2.5)

D2
t U

n = ∇ ·
(
Aε(Dt U

n) + Bε(Un)−MΘn
)

+ fn, (2.6)

and its corresponding weak form,

(Dt Θn, χ) + (∇Θn,∇χ) =
(
σ(Θn−1)|∇Φn−1|2, χ

)
−
(
M : ε(Dt U

n−1), χ
)
, (2.7)

(σ(Θn)∇Φn,∇χ) = 0, (2.8)(
D2

t U
n,χ

)
+ (Aε(Dt U

n) + Bε(Un), ε(χ))Q = (MΘn, ε(χ))Q + (fn,χ) , (2.9)

for n = 1, . . . , N and for all χ ∈ Sh and χ ∈ Sh, respectively. The initial conditions
are the same as in the continuous case: Θ0 = θ0, U

0 = u0 and Dt U
1 = v0. Note

that this discretization results in a decoupling of the equations; we solve �rst for
Θn using (2.4) then use this to �nd Φn from (2.5) and Un from (2.6). This implies
a signi�cant decrease in computational e�ort compared to the fully coupled case
arising from e.g. the implicit Euler discretization.

For the spatial discretization, we introduce the �nite element spaces Sh ⊂ V and
Sh ⊂ V . These consist of continuous, piecewise linear functions with zero trace on
∂Ω, de�ned on a quasi-uniform mesh with mesh-width h. Then the fully discrete
problem we are interested in is given by

(Dt Θn
h, χ) + (∇Θn

h,∇χ) =
(
σ(Θn−1

h )|∇Φn−1
h |2, χ

)
−
(
M : ε(Dt U

n−1
h ), χ

)
, (2.10)

(σ(Θn
h)∇Φnh,∇χ) = 0, (2.11)(

D2
t U

n
h ,χ

)
+ (Aε(Dt U

n
h ) + Bε(Unh ), ε(χ))Q = (MΘn

h, ε(χ))Q + (fn,χ) , (2.12)

for n = 1, . . . , N and for all χ ∈ Sh and χ ∈ Sh, respectively. Here, the approxi-
mations satisfy Θn

h ∈ Sh, Φnh − φb(tn) ∈ Sh and Unh ∈ Sh. As initial conditions, we
take U0

h = 0, Dt U
1
h = U1

h = 0 and Θ0
h = Ihθ0, the Lagrangian interpolant of the

exact initial condition.

3. Error analysis

Our main goal is to estimate the errors ‖Θn
h − θn‖, ‖Φnh − φn‖ and ‖Unh − un‖.

In order to do this, we will generalize the analysis of [21] (cf. also [10]) for the
case with no deformation. This consists of �rst showing that the time-discrete
approximations are O(k)-close to the solutions of the continuous system, and also
proving that these approximations exhibit a certain regularity. The key part here
is to express the error in the potential in terms of the error in the temperature, and
then only working with the temperature equation. With the given regularity, the
time-discrete and fully discrete approximations can then be compared and shown
to be O(h2)-close. The main problem here is the nonlinear term σ(θ)|∇φ|2, which is
handled in a two-step fashion: �rst using that ‖∇(Φnh−Φn)‖ ≤ C(h+‖Θn

h−Θn‖) to
show that in fact ‖∇(Φnh−Φn)‖ ≤ Ch and then using this to estimate ∇(Φnh − Φn)
in a stronger norm.

In our case, the temperature equation (1.1) contains the extra term M : ε(u̇),
so our idea is to also bound the error in u̇ by the error in the temperature. Then
we show that the approximations Un possess certain regularity, which may be
used to also express the fully discrete deformation errors in terms of the fully



FEM ANALYSIS FOR A THERMOVISCOELASTIC SYSTEM 5

discrete temperature errors. The key part in the latter step is to utilize the concept
of Ritz-Volterra projections [22], which we here generalize to the vector-valued
viscoelasticity case, as well as to discrete time.

Before we perform this extended analysis, we state the general assumptions on
the given data. In these, as well as throughout the rest of the paper, C denotes a
generic constant independent of k, h and n, that may di�er from line to line.

Assumption 3.1. The viscosity and elasticity tensors A and B are symmetric,

and both yield Lipschitz continuous and strongly coercive bilinear forms. That is,

there are positive constants C1, C2 such that for all u, v ∈ V we have

max
(

(Aε(u), ε(v))Q , (Bε(u), ε(v))Q

)
≤ C1‖u‖V ‖v‖V and

min
(

(Aε(u), ε(u))Q , (Bε(u), ε(u))Q

)
≥ C2‖u‖2V .

Assumption 3.2. The electrical conductivity σ belongs to C1(R) and there are

positive constants σmin, σmax and σ′
max

such that for all θ ≥ 0 we have

0 < σmin ≤ σ(θ) ≤ σmax and |σ′(θ)| ≤ σ′
max

.

Assumption 3.3. The function f ∈ C(0, T ; L2), θ0 ∈ H2 ∩H1
0 and φb is regular

enough that

‖φb‖L∞(0, T ;W 2,12/5) + ‖φ̇b‖L2(0, T ;H1) + ‖∇φb‖L∞(0, T ;L∞) ≤ C.

By [19], these assumptions guarantee the existence of a weak solution to the
problem, i.e functions (θ, φ, u) satisfying (2.1)�(2.3) with the time derivatives inter-

preted in a weak sense. Thus for example θ ∈ L2(0, T ;V ) and θ̇ ∈ L2(0, T ;V )′. For
optimal convergence orders more regularity is required, and explicit conditions on
the data that guarantees such regularity is currently unknown. We therefore also
make the following regularity assumption:

Assumption 3.4. There exist solutions (θ, φ, u) to (2.1)�(2.3) over the time in-

terval [0, T ] which are regular enough that

‖θ‖L∞(0, T ;H2) + ‖θ̇‖L∞(0, T ;L2) + ‖θ̇‖L2(0, T ;H2) + ‖θ̈‖L2(0, T ;L2) ≤ C,

‖φ‖L∞(0, T ;W 2,12/5) + ‖φ̇‖L2(0, T ;H1) + ‖∇φ‖L∞(0, T ;L∞) ≤ C,

‖u̇‖L∞(0, T ;H2) + ‖ü‖L∞(0, T ;H2) + ‖u(3)‖L2(0, T ;L2) ≤ C

The assumptions on θ and φ are essentially the same as in the non-deformable
situation given in [21], while the assumptions on u and f are new. We note that for
the non-deformable case, the existence of solutions with similar regularity properties
was e.g. shown in [10] when d ≤ 2 but with weak requirements on the initial values.
Additionally, our numerical experiments suggest that in practice Assumption 3.4 is
satis�ed for convex domains and smooth data.

The following main theorem will be proved in the next two subsections:

Theorem 3.1. Let Assumptions 3.1-3.4 be satis�ed and let (θ, φ, u) and (Θn
h,Φ

n
h, U

n
h )

be solutions to the equations (2.1)�(2.3) and (2.10)�(2.12), respectively. Then there

are positive constants k0 and h0 such that if k < k0 and h < h0 we have for

n = 1, . . . , N that

‖Θn
h − θn‖+ ‖Φnh − φn‖+ ‖Dt U

n
h − u̇n‖ ≤ C(h2 + k),
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and

‖Θn
h − θn‖H1 + ‖Φnh − φn‖H1 + ‖Dt U

n
h − u̇n‖V ≤ C(h+ k).

To abbreviate expressions like the above in the following, we introduce

enθ = Θn − θn, enφ = Φn − φn and enu = Un − un

as well as

enθ,h = Θn
h −Θn, enφ,h = Φnh − Φn and enu,h = Unh − Un.

3.1. The time-discrete case. We start by considering the semi-discrete case, and
�rst provide a bound for Dt e

n
u in terms of enθ .

Lemma 3.1. Let Assumptions 3.1-3.4 be satis�ed and let (θ, φ, u) and (Θn,Φn, Un)
be solutions to the equations (2.1)�(2.3) and (2.7)�(2.9), respectively. Then we have

‖Dt e
n
u‖2 + ‖enu‖2V + k

n∑
j=1

‖Dt e
j
u‖2V ≤ Ck2 + Ck

n∑
j=1

‖ejθ‖
2,

for n = 1, . . . , N .

Proof. By equations (2.3) and (2.9), we see that the error enu satis�es(
D2

t e
n
u,χ

)
+ (Aε(Dt e

n
u) + Bε(enu), ε(χ)) = (Menθ , ε(χ)) +

(
ü(tn)−D2

t u(tn),χ
)

+ (Aε(u̇(tn)−Dt u(tn)), ε(χ))

≤ C‖enθ ‖‖χ‖V + Ck‖χ‖+ Ck‖χ‖V

due to the regularity assumptions on u. We note that for any sequence {gn} we
have

2
(
Dt

2 gn,Dt g
n
)
≥ Dt‖Dt g

n‖2 and 2 (Bε(gn),Dt g
n) ≥ Dt‖Dt g

n‖2B,

where ‖·‖B is the norm induced by the inner product (Bε(·), ε(·)). Thus by choosing
χ = Dt e

n
u and using the Cauchy�Schwarz inequality as well as Young's inequality,

ab ≤ 1
2ca

2 + c
2b

2, we get

Dt‖Dt e
n
u‖2 + 2C2‖Dt e

n
u‖V + Dt‖enu‖2B ≤ Ck2 + C‖enθ ‖2 + C2‖Dt e

n
u‖2V .

Canceling the �nal term, summing over n and modifying the constants then yields

‖Dt e
n
u‖2 + k

n∑
j=1

‖Dt e
j
u‖V + ‖enu‖2B ≤ Ck2 + Ck

n∑
j=1

‖ejθ‖
2,

and the Lemma follows from the equivalence between the B- and V -norms.
� �

Theorem 3.2. Let Assumptions 3.1-3.4 be satis�ed and let (θ, φ, u) and (Θn,Φn, Un)
be solutions to the equations (1.1)�(1.3) and (2.4)�(2.6), respectively. Then there

is a positive constant k0 such that if k < k0 then

‖enθ ‖2H1 + ‖enφ‖2H1 + ‖Dt e
n
u‖2V ≤ Ck2,
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for n = 1, . . . , N . In addition, the approximations have the following regularity:

‖Θn‖2H2 + ‖Dt Θn‖2 + k

n∑
j=1

‖Dt Θj‖2H2 ≤ C,

‖Φn‖W 2,12/5 + ‖∇Φn‖L∞ ≤ C,

‖Dt U
n‖2H2 + ‖D2

t U
n‖2V + k

n∑
j=1

‖D2
t U

j‖2H2 ≤ C.

Proof. To begin with, we see that the error enφ satis�es

−∇ ·
(
σ(Θn)∇enφ)

)
= ∇ ·

(
(σ(Θn)− σ(θn))∇φn

)
.

Multiplying this equation by enφ and integrating directly yields

‖∇enφ‖2 ≤ C‖∇φn‖L∞‖enθ ‖‖∇enφ‖,

so that

‖∇enφ‖ ≤ C‖enθ ‖ (3.1)

by the regularity assumptions. This inequality for enφ corresponds to Lemma 3.1
for enu. Further, we see that the error e

n
θ satis�es

Dt e
n
θ −∆enθ =

(
σ(Θn−1)− σ(θn−1)

)
|∇φn−1|2 + σ(Θn−1)

(
∇Φn−1 +∇φn−1

)
· ∇en−1

φ

−M : ε(Dt e
n−1
u ) +Rnθ ,

(3.2)
where

Rnθ =
(
σ(θn−1)− σ(θn)

)
|∇φn−1|2 + σ(θn)

(
∇φn−1 +∇φn

)
·
(
∇φn−1 −∇φn

)
+M : ε(u̇n − u̇n−1) +M : ε(u̇n−1 −Dt un−1).

is bounded by ‖Rnθ ‖ ≤ Ck, again by the regularity assumptions. By multiplying
by enθ and integrating, we therefore get

Dt‖enθ ‖2 + 2‖∇enθ ‖2 ≤ C‖en−1
θ ‖‖enθ ‖‖∇φn−1‖L∞ +

(
M : ε(Dt e

n−1
u ), enθ

)
+ Ck‖enθ ‖

+
(
σ(Θn−1)

(
∇Φn−1 +∇φn−1

)
enθ ,∇en−1

φ

)
.

(3.3)
The last term of this expression can be shown to be bounded by C(‖enθ ‖2 + ‖eφ‖2H1),
see [21, p.627], and for the second we observe that for a generic u ∈ V ,

(M : (∇u), χ)L2 = (∇u,Mχ)Q = − (u,∇ · (Mχ))L2 = − (u,M∇χ)L2 .

As a completely analogous calculation holds also for (∇u)T and M is symmetric,
we thus have

(M : ε(u), χ) = − (u,M∇χ) ≤ C‖u‖‖∇χ‖. (3.4)

This implies that (3.3) reduces to

Dt‖enθ ‖2 +2‖∇enθ ‖2 ≤ C
(
k2 +‖en−1

θ ‖2 +‖enθ ‖2 +‖en−1
φ ‖2H1 +‖Dt e

n−1
u ‖2

)
+‖∇enθ ‖2.

Canceling the last term, summing up and using Equation (3.1) and Lemma 3.1 thus
yields

‖enθ ‖2 + k

n∑
j=1

‖∇ejθ‖
2 ≤ Ck2 + Ck

n∑
j=1

‖ejθ‖
2.
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Under the step size restriction Ck < 1, we can eliminate the last term of the sum.
An application of Grönwall's lemma then shows that the left-hand side is bounded
by Ck2. Using Equation (3.1) and Lemma 3.1 again, we see that in fact

‖enθ ‖2 + k

n∑
j=1

‖∇ejθ‖
2 + ‖∇enφ‖2 + ‖Dt e

n
u‖2 + ‖enu‖2V + k

n∑
j=1

‖Dt e
j
u‖2V ≤ Ck2

From these preliminary bounds, we may deduce the desired regularity of Θn and
Φn and then test (3.2) with −∆enθ to acquire

‖enθ ‖2H1 + k

n∑
j=1

‖∆ejθ‖
2 ≤ Ck2.

For details, we refer to [21, Theorem 3.1]. Let us instead investigate the remaining
questions of the regularity of Un and the pointwise bound for Dt e

n
u in the V -norm.

By the de�ning equation, we have that

∇ ·
(
Aε(Dt e

n
u) + Bε(enu)

)
= D2

t e
n
u +∇ ·

(
MΘn

)
+ Dt

2 u(tn)− ü(tn)

+∇ ·
(
Aε(Dt u(tn)− u̇(tn))

)
,

(3.5)

where the right-hand side is in L2 since ‖D2
t e

n
u‖ ≤ k−1(‖Dt e

n
u‖+ ‖Dt e

n−1
u ‖) ≤ C.

Let us denote it by gn. Then we can rewrite the previous equation as

∇ ·
(
Aε(Dt e

n
u) + kBε(Dt e

n
u)
)

= gn +∇ ·
(
Bε(en−1

u )
)
.

Now since both B and A+kB induces bounded and coercive inner products on V ,
we see that

‖Dt e
n
u‖2H2 ≤ C‖∇ ·

(
Aε(Dt e

n
u) + kBε(Dt e

n
u)
)
‖2

≤ C‖gn‖2 + C‖en−1
u ‖2H2

But since en−1
u = k

∑n−1
j=1 Dt e

j
u, we can estimate the second term by Cauchy�

Schwarz as

‖en−1
u ‖2H2 ≤ k

n−1∑
j=1

‖Dt e
j
u‖2H2 .

An application of Grönwall's lemma thus shows that

‖Dt e
n
u‖H2 ≤ C,

which also implies that enu, U
n and Dt U

n are all in H2. We may now multiply (3.5)
by ∇ ·

(
(A + kB)ε(Dt e

n
u)
)
and integrate to get

(Dt ε(Dt e
n
u), (A + kB)ε(Dt e

n
u))+‖∇·

(
(A+kB)ε(Dt e

n
u)
)
‖2 ≤ C‖enθ ‖2H1+C‖en−1

θ ‖2H2 ,

where we have used the Cauchy-Schwarz and Young inequalities and canceled a term
1
2‖∇ ·

(
(A+ kB)ε(Dt e

n
u)
)
‖2. The �rst term on the left-hand side can be estimated

from below by Dt‖Dt e
n
u‖A+kB, so summing up and using the equivalence of the

(A + kB)- and V -norms, we get

‖Dt e
n
u‖2V + k

n∑
j=1

‖Dt e
j
u‖2H2 ≤ Ck

n−1∑
j=1

‖ejθ‖
2
H1 + Ck

n−1∑
j=1

‖Dt e
j
u‖2H2 .
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But the �rst term in the right-hand side is bounded by Ck2 and in the second we

may again use that ‖Dt e
j
u‖2H2 ≤ k

∑j
i=1 ‖Dt e

i
u‖2H2 . De�ning

wn = ‖Dt e
n
u‖2V + k

n∑
j=1

‖Dt e
j
u‖2H2 ,

we thus have

wn ≤ Ck2 + Ck

n−1∑
j=1

wj ,

and an application of Grönwall's lemma shows that wn ≤ Ck2. This yields the �nal
desired error bound, and additionally shows that ‖Dt

2 enu‖2V +k
∑n
j=1 ‖Dt

2 eju‖2H2 ≤
C which implies the stated regularity for Un.

� �

3.2. The fully discrete case. We now turn to the fully discretized case and �rst
prove an analogue to Lemma 3.1.

Lemma 3.2. Let Assumptions 3.1-3.4 be satis�ed and (Θn,Φn, Un) and (Θn
h,Φ

n
h, U

n
h )

be solutions to equations (2.7)�(2.9) and (2.10)�(2.12), respectively. Then there is

a positive constant k0 such that if k < k0 we have for n = 1, . . . , N that

‖enu,h‖2 + ‖Dt e
n
u,h‖2 ≤ Ch4 + Ck

n∑
j=1

‖ejθ,h‖
2 and

‖enu,h‖2V + k

n∑
j=1

‖Dt e
j
u,h‖

2
V ≤ Ch2 + Ck

n∑
j=1

‖ejθ,h‖
2.

Remark 3.1. In the case of a �rst-order equation, one would typically �rst add
and subtract the Ritz projection of enu in order to work only in the �nite element
space. This approach is viable also in the second-order case, if one de�nes the Ritz
projection using the (Aε(·), ε(·)) inner product. We refer to [25] for the scalar-
valued case. However, we choose to instead work with a Ritz-Volterra projection,
see [22] for the scalar-valued case. Such a projection takes both theA- and B-terms
into account simultaneously, i.e. it is a projection of C1(0, T ;V )-functions rather
than of elements in V . In the present situation, we need of course to consider a
discretized version, but it nevertheless simpli�es matters.

Proof. Subtracting (2.9) from (2.12), we see that(
D2

t e
n
u,h,χ

)
+
(
Aε(Dt e

n
u,h) + Bε(enu,h), ε(χ)

)
=
(
Menθ,h, ε(χ)

)
for all χ ∈ Sh. Now let enu,h = ηn + ρn, where

ηn = Unh −Wn ∈ Sh and ρn = Wn − Un,
with the discrete Ritz-Volterra projection Wn of Un satisfying W 0 = U0 = 0 and

(Aε(DtW
n −Dt U

n) + Bε(Wn − Un), ε(χ)) = 0 (3.6)

for all χ ∈ Sh. We note that Equation (3.6) may also be stated as

(Aε(Dt ρ
n) + Bε(ρn), ε(χ)) = 0,

and that since U1 = 0, also W 1 = 0. Additionally, we need the Ritz projection Rh
given by the viscosity term. For a generic u ∈ V , this is de�ned by

(Aε(Rhu− u), ε(χ)) = 0
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for all χ ∈ Sh, and we have the inequality

‖Rhu− u‖+ h‖Rhu− u‖V ≤ Ch2‖u‖H2 .

We start by estimating the V -norms of Dt ρ
n and ρn. To this end, we observe

that for a generic u, we have

‖u‖2V = ‖ε(u)‖2Q ≤ ‖∇u‖2Q =

d∑
j=1

∥∥∥ ∂u
∂xj

∥∥∥2

and that ∥∥∥ ∂u
∂xj

∥∥∥ = sup
ϕ∈C∞

0 (Ω)d,‖ϕ‖=1

(
∂u

∂xj
, ϕ

)
.

We therefore take ϕ ∈ C∞0 (Ω)d with ‖ϕ‖ = 1 and let Ψ ∈ V be the solution to

(Aε(Ψ), ε(χ))Q = −
(
∂ϕ

∂xj
,χ

)
.

Then(
∂Dt ρ

n

∂xj
, ϕ

)
= −

(
Dt ρ

n,
∂ϕ

∂xj

)
= (Aε(Ψ), ε(Dt ρ

n)) = (Aε(Dt ρ
n), ε(Ψ))

= (Aε(Dt ρ
n), ε(Ψ−RhΨ)) + (Aε(Dt ρ

n), ε(RhΨ))

= (Aε(Dt ρ
n), ε(Ψ−RhΨ))− (Bε(ρn), ε(RhΨ)) =: R1 +R2,

where the last term is bounded by

R2 ≤ C‖ρn‖V ‖RhΨ‖V ≤ C‖ρn‖V (‖RhΨ−Ψ‖V + ‖Ψ‖V ) ≤ C‖ρn‖V .

Moreover, since DtW
n ∈ Sh, the �rst term is bounded by

R1 = − (Aε(Dt U
n), ε(Ψ−RhΨ)) = (Aε(Rh Dt U

n −Dt U
n), ε(Ψ−RhΨ))

= (Aε(Rh Dt U
n −Dt U

n), ε(Ψ))

≤ C‖Rh Dt U
n −Dt U

n‖V ‖Ψ‖V
≤ Ch‖Dt U

n‖H2 .

By expressing ρn in terms of Dt ρ
j and noting that ρ0 = 0, we thus have

‖Dt ρ
n‖V ≤ Ch‖Dt U

n‖H2 + Ck

n∑
j=1

‖Dt ρ
j‖V ,

and under the step size restriction Ck < 1 we can eliminate the last term of the
sum and apply Grönwall's lemma. This shows that

‖Dt ρ
n‖V ≤ Ch

(
‖Dt U

n‖H2 + Ck

n−1∑
j=1

‖Dt U
j‖H2

)
.

By using the regularity shown in Theorem 3.2 and then summing over n, we see
that

‖ρn‖V + ‖Dt ρ
n‖V ≤ Ch.

Using these bounds we may now estimate ρ also in the L2-norm, by instead letting
Ψ ∈ V be the solution to

(Aε(Ψ), ε(χ))Q = − (ϕ,χ) .
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Then as before,

(Dt ρ
n, ϕ) = (Aε(Rh Dt U

n −Dt U
n), ε(Ψ)) + (Bε(ρn), ε(RhΨ)) =: R3 +R4,

where
R3 ≤ C‖Rh Dt U

n −Dt U
n‖V ‖Ψ‖V ≤ Ch2‖Dt U

n‖H2 .

For R4, we note that ‖Ψ‖H2 ≤ C‖ϕ‖ ≤ C, so that by using integration by parts
and observing that both ρn and Ψ are zero on ∂Ω we get,

R4 ≤ (Bε(ρn), ε(RhΨ−Ψ)) + (Bε(ρn), ε(Ψ))

≤ C‖ρn‖V ‖RhΨ−Ψ‖V + C‖ρn‖‖Ψ‖H2 + ‖ρn‖L2(∂Ω)‖Ψ‖H1(∂Ω)

≤ Ch2 + C‖ρn‖.
Hence similarly to the calculation for the V -norm, Grönwall's lemma implies that

‖Dt ρ
n‖ ≤ Ch2

(
‖Dt U

n‖H2 + Ck

n−1∑
j=1

‖Dt U
j‖H2

)
,

so that
‖ρn‖+ ‖Dt ρ

n‖ ≤ Ch2.

To bound ηn, we also need a bound on the second derivative of ρn. For this, we
apply Dt to (3.6) and then follow the same procedure as above. This shows that

‖D2
t ρ

n‖V ≤ Ch
(
‖D2

t U
n‖H2 + Ck

n−1∑
j=1

‖D2
t U

j‖H2

)
,

and similarly for the L2-norm, but with h2 instead of h. We do not have pointwise
H2-regularity of D2

t U
n from Theorem 3.2, but we may estimate the sum by

k

n−1∑
j=1

‖D2
t U

j‖H2 ≤
(
k

n−1∑
j=1

‖D2
t U

j‖2H2

)1/2

≤ C,

and conclude that

‖D2
t ρ

n‖+ h‖D2
t ρ

n‖V ≤ Ch2 + Ch2‖D2
t U

n‖H2 . (3.7)

Here the ‖D2
t U

n‖H2-term is not necessarily �nite, but since this bound will only
be used inside a sum it causes no problems.

Now for ηn, by using (3.6) to exchange Wn for Un and then (2.9), (2.12), we get(
D2

t η
n,χ

)
+ (Aε(Dt η

n) + Bε(ηn), ε(χ))

=
(
D2

t U
n −D2

t W
n,χ

)
+
(
Menθ,h, ε(χ)

)
= −

(
D2

t ρ
n,χ

)
+
(
Menθ,h, ε(χ)

)
Choosing χ = Dt η

n ∈ Sh, by (3.7) we get, after canceling a C2‖Dt η
n‖2V term,

Dt‖Dt η
n‖2 + C2‖Dt η

n‖2V + Dt‖ηn‖2B ≤ C
(
h4 + h4‖D2

t U
n‖2H2 + ‖enθ,h‖2

)
,

so summing and noting again that k
∑n−1
j=1 ‖Dt U

j‖2H2 ≤ C, we have

‖Dt η
n‖2 + k

n−1∑
j=1

‖Dt η
j‖2V + ‖ηn‖2V ≤ Ch4 + Ck

n−1∑
j=1

‖ejθ,h‖
2.

Finally, combining the bounds for ρn, ηn and their �rst derivatives leads to the
statement of the lemma. � �
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Remark 3.2. We note that the regularity given in Theorem 3.2 is not enough to
show ‖Dt e

n
u,h‖2V ≤ Ch2 + Ck

∑n
j=1 ‖e

j
θ,h‖2, but such a bound is not required for

the proof of the next theorem.

Theorem 3.3. Let Assumptions 3.1-3.4 be satis�ed and (Θn,Φn, Un) and (Θn
h,Φ

n
h, U

n
h )

be solutions to equations (2.7)�(2.9) and (2.10)�(2.12), respectively. Then there are

positive constants k0 and h0 such that if k < k0 and h < h0 then for n = 1, . . . , N ,

‖enθ,h‖+ ‖enφ,h‖+ ‖Dt e
n
u,h‖ ≤ Ch2 and ‖enθ,h‖H1 + ‖enφ,h‖H1 + ‖Dt e

n
u,h‖V ≤ Ch.

Proof. The idea is, similarly to the time-discrete case, essentially to write down the
equation for enθ , test it with e

n
θ , express the errors eu,h and eφ,h in terms of eθ,h by

Lemma 3.2 and its potential-analogue, and �nally use Grönwall's lemma. However,
since enθ does not belong to the �nite element space, we need to introduce instead

enh = Θn
h −RhΘn,

where ‖enθ,h‖ ≤ ‖enh‖+ ‖RhΘn−Θn‖ ≤ ‖enh‖+Ch2 due to Theorem 3.2. With this
de�nition, we see that for all χ ∈ Sh,

(Dt e
n
h, χ) + (∇θnh ,∇χ) = (Dt(Θ

n −RhΘn), χ) + (Rφ, χ)−
(
M : ε(Dt e

n−1
u,h ), χ

)
,

where Rφ contains terms related to the potential φ. Choosing χ = enh, we know
from [21] that

(Rφ, e
n
h) ≤ Ch3 + Ch4‖Dt Θn‖2H2 + Ch−1‖en−1

h ‖4 + C‖en−1
h ‖2 +

1

4
‖enh‖2H1 ,

and we also have by (3.4) that(
M : ε(Dt e

n−1
u,h ), enh

)
≤ C‖Dt e

n−1
u,h ‖

2 +
1

4
‖enh‖2H1 .

We additionally know that ‖e0
h‖ = ‖Ihθ0 − θ0‖ ≤ Ch2 < h1/2 if h < h0. Assuming

that ‖emh ‖ ≤ h1/2 for m = 1, . . . , n− 1 therefore means that

Dt‖emh ‖2 + ‖emh ‖2H1 ≤ Ch3 + Ch4‖Dt Θm‖2H2 + C‖em−1
h ‖2 + C‖Dt e

m−1
u,h ‖

2

for m = 1, . . . , n, which after summation and usage of Lemma 3.2 yields

‖emh ‖2 + k
m∑
j=1

‖ejh‖
2
H1 ≤ Ch3 + Ch4 + Ck

m−1∑
j=1

‖ejh‖
2 + Ck

m−1∑
j=1

‖Dt e
j
u,h‖

2

≤ Ch3 + Ck

m−1∑
j=1

(
‖ejh‖

2 + Ck

j∑
i=1

‖eih‖2
)
.

If we now set gm = max1≤j≤m
(
‖ejh‖2 + Ck

∑j
i=1 ‖eih‖2

)
we have

gm ≤ Ch3 + Ck

m−1∑
j=1

gj ,

to which we may apply Grönwall's lemma to acquire

‖enh‖2 + Ck

n∑
j=1

‖ejh‖
2 ≤ C̃h3.

Hence if C̃h5/2 ≤ 1 we have that ‖enh‖ ≤ h1/2. Thus by induction ‖enh‖ ≤ h1/2

holds for all n such that 0 ≤ n ≤ N . But then also the other calculations just
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performed are valid for 1 ≤ n ≤ N , so in fact ‖enh‖ ≤ h3/2. This preliminary bound
may be used as in [21, p.631] to show ‖enφ,h‖ ≤ Ch and to improve the bound of
the quadratic potential term to

(Rφ, e
n
h) ≤ Ch4 + Ch4‖Dt Θn‖2H2 + C‖en−1

h ‖2 +
1

4
‖enh‖2H1 .

Hence,

‖enh‖2 + k

n∑
j=1

‖ejh‖
2
H1 ≤ Ch4 + Ck

m−1∑
j=1

(
‖ejh‖

2 + Ck

j∑
i=1

‖eih‖2
)
,

and once more applying Grönwall's lemma to gn shows that

‖enh‖2 + k

n∑
j=1

‖ejh‖
2
H1 ≤ Ch4.

This proves ‖enθ,h‖ ≤ Ch2, and from [21] we �nd ‖enφ,h‖+ h‖enφ,h‖H1 ≤ Ch2. Ap-

plying Lemma 3.2 gives ‖Dt e
n
u,h‖ ≤ Ch2. Finally, by inverse inequalities we �nd

also that ‖enθ,h‖H1 + ‖Dt e
n
u,h‖V ≤ Ch. � �

of Theorem 3.1. This follows directly from Theorem 3.2 and Theorem 3.3 upon
observing that, e.g.,

‖Dt U
n
h − u̇n‖ ≤ ‖eu,h‖+ ‖eu‖+ ‖Dt un − u̇n‖,

where the last term is bounded in the proper way due to the regularity assumptions
on the solution to the continuous system. � �

4. Numerical experiments

We have implemented both the method based on (2.10)�(2.12) and the corre-
sponding fully implicit method based on implicit Euler, using FEniCS (see e.g. [4,
23]). These implementations were then used to verify our theoretical results by
applying them to the following test examples.

4.1. Problem 1. First consider the two-dimensional problem with Ω = (0, 1)2,
M = I, f = [0, 0]T and the viscosity and elasticity tensors given in Voigt notation
by

A = B =

1 1 0
1 1 0
0 0 1

 .
We take the electrical conductivity to be given by

σ(θ) = 2.5− arctan(5θ − 10),

which has a rather steep slope close to θ = 2. The initial conditions are given
by θ0(x, y) = 0 and u0(x, y) = v0(x, y) = [0, 0]T . These functions also de�ne the
Dirichlet boundary conditions for θ and u, while for φ they are given by φb(x, y) =
5(1− x).

We discretize Ω by �rst subdividing it into squares and then dividing each square
into four triangles. With Nx squares in each dimension, each triangle has diameter
h = 1/Nx and the full grid has 4N2

x triangles. We take Nx ∈ {4, 8, 16, 32, 64}.
Since the error should be O(h2 + k), we choose the number of time steps to be
Nt = N2

x/2. With the �nal time T = 1, this gives k = 2h2. We emphasize here
that the time steps could be taken much larger than this, but illustrating the error
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Figure 1. The errors (4.1) for the problem de�ned in Section 4.1,
computed by the semi-implicit method (left) and the implicit Euler
method (right).

is then less straightforward. Finally, because the exact solution of the problem
is not available we cannot compute the exact errors. Instead, we compare the
di�erent approximations to a reference approximation (Θref,Φref, Uref) computed
by the implicit Euler scheme with Nx = 128 and Nt = 8192.

Figure 1 shows the errors

max
1≤n≤Nt

‖Θn
h−Θref(tn)‖L2 , max

1≤n≤Nt

‖Φnh−Φref(tn)‖L2 and max
1≤n≤Nt

‖Unh−Uref(tn)‖L2

(4.1)
for the di�erent discretizations on a logarithmic scale, for both the semi-implicit
method (left) and the method based on implicit Euler (right). These clearly exhibit
the expected error behaviour predicted by Theorem 3.3, except for the �rst points
where the grid is very coarse. We also note that the errors are very similar in size,
which means that the semi-implicit method is much more e�cient. A peculiar e�ect
in this case is that the semi-implicit errors in θ and φ are actually less than the
implicit Euler errors, though this does not hold for the error in u.

4.2. Problem 2. In the second experiment, we investigated the in�uence of the
viscosity on the errors. To this end, we employ the same data as presented in
Section 4.1 except for the viscosity operator which we set to

A = γ

1 1 0
1 1 0
0 0 1


(in Voigt notation). In this case, we used Nx ∈ {4, 8, 16, 32} with Nt = N2

x/4
and took Nx = 64, Nt = 1024 for the reference approximation. We only used the
semi-implicit scheme here. The �rst observation is that varying γ has essentially
no e�ect on the errors in θ and φ. This is to be expected, as the in�uence of u on
θ is not so large. We therefore omit the plots of these errors, and instead present
the error in u for di�erent values of γ in Figure 2.

We observe that the error clearly increases as γ is decreased, which is to be
expected. Indeed, an inspection of the convergence proof indicates that the L2-
error should be inversely proportional to the coercivity constant of A, and thus
also of γ. This is, however, in the worst case. In the current situation, Figure 2
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Figure 2. The errors max1≤n≤Nt‖Unh − Unref‖L2 for the problem
de�ned in Section 4.2, computed by the semi-implicit method.
The di�erent curves correspond to the di�erent values of γ ∈
{100, 10−1, 10−2, 10−3, 10−5}.

Figure 3. A mesh for the problem described in Section 4.3. The
outer dimensions are 192× 27× 9.

indicates that even γ = 0 would be perfectly feasible, though smaller step sizes
might be necessary to enter the asymptotic regime.

4.3. Problem 3. For our last numerical experiment, we consider a 3D problem
arising from an engineering application, inspired by [15] and [16]. We let Ω be
as in Figure 3, which also shows a typical spatial tetrahedral discretization. This
represents a micro-electro-mechanical system (MEMS) used for precise positioning
on small scales. When an electric current is passed through the device from the
upper-left connector to the lower-left connector, it heats up. This causes a deforma-
tion, which due to the asymmetrical design of the component makes the tip move
downwards.

We employ homogeneous Neumann boundary conditions everywhere except for
at the left-most edge of the two connectors. These correspond to the component
being insulated and stress-free. On the left-most edge we choose the Dirichlet
boundary conditions

θ = 0, φ =

{
1, z > 0

−1, z < 0
, and u = v =

[
0
0

]
,

corresponding to the component being clamped and having a potential di�erence
applied between the two connectors. Further, we take M = 10−1I, f = [0, 0, 0]T
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h k Vertices Error in θ Error in φ Error in u
4.84 6.67× 101 5319 6.18× 10−2 4.33× 10−1 2.42× 102

3.73 5.00× 101 7554 5.40× 10−2 2.99× 10−1 2.23× 102

2.80 2.86× 101 11 888 3.96× 10−2 1.76× 10−1 1.71× 102

2.48 2.22× 101 18 799 3.22× 10−2 1.24× 10−1 1.42× 102

2.01 1.54× 101 28 535 2.12× 10−2 8.91× 10−2 9.54× 101

1.33 6.90 85 260 - - -
Table 1. Spatial and temporal discretizations parameters as well
as maximal errors for the MEMS problem (Section 4.3) at the time
points tj = 2j · 102 for j = 1, . . . , 10. The last line corresponds to
the reference approximation.

and (for simplicity) the viscosity and elasticity operators to be

A = B


1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 ,

in Voigt notation. The electrical conductivity is chosen as in [16],

σ(θ) = 0.5 +
π

1.5

(
π

2
+ arctan

(
200(θ − 0.25)

))
.

We solve the problem until the time T = 2 · 103 using the semi-implicit method
for di�erent spatial and temporal discretizations. The maximum sizes h of the
tetrahedrons that were used and the corresponding number of vertices are listed in
Table 1. The time steps were again taken proportional to h2, in this case roughly
4h2 but modi�ed slightly to yield an integer number of steps. Since the temporal
grids thus generated are not re�nements of each other, we measured the error as the
sum of the errors at only the points tj = 2j · 102 for j = 1, . . . , 10. These errors are
also listed in Table 1, and plotted in Figure 4. While we cannot apply Theorem 3.3
directly due to the mixed boundary conditions and the non-convexity of the do-
main, we observe that we still acquire almost O(h2 + k) convergence. The di�erent
magnitudes of the errors re�ect the relative sizes of the solution components.

Finally, Figure 5 shows the approximations ΘN
h , ΦNh and UNh at T , viewed from

the side. We note that the body deforms in the expected fashion. The chosen T is
still in the transient phase before the temperature and deformation have stabilized,
and careful inspection shows how the body �exes also in undesirable directions
before reaching a steady state. In a real electrical component such deformations
might result in unforeseen amounts of material fatigue. This observation therefore
provides additional motivation for studying the fully dynamical rather than quasi-
static or static process.
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Figure 4. Maximal errors at the time points tj = 2j · 102 for
j = 1, . . . , 10 for the MEMS problem de�ned in Section 4.3.

Figure 5. The approximation to the solution of the problem de-
�ned in Section 4.3 at t = T and with the �nest spatial and tem-
poral discretization. In the right-most plot, the grid has been de-
formed according to the computed displacement and then super-
imposed over the original mesh to illustrate the deformation. We
note that the grid is never deformed in the actual computations.
(This �gure is in color in the electronic version of the article.)

5. Conclusions and outlook

We have presented a fully discrete numerical method for the fully coupled ther-
moviscoelastic thermistor problem (1.1)�(1.3) and proved optimal convergence or-
ders in both space and time. These theoretical results are validated by experimental
results.

We reiterate that mixed boundary conditions and re-entrant corners might lead
to order reductions. In that case an adaptive mesh re�nement strategy may be
used, which requires a good a posteriori error estimate. It is possible that the ideas
in [3] regarding this can be extended to the present, deformable case.

As illustrated by Section 4.3, a typical thermistor is not convex, so a further item
that could be improved in the analysis is therefore the shape of the computational
domain itself. In this direction we note that the stationary version of the non-
deformable problem has been studied in [16, 18] for very general domains. It is
our ambition to extend these ideas to the time-dependent deformable case in the
future.
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