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Abstract

The treatment of the stochastic linear quadratic optimal control prob-
lem with finite time horizon requires the solution of stochastic differential
Riccati equations (SRE). We propose efficient numerical methods which
exploit the particular structure and can be applied for large scale systems.
They are based on numerical methods for ordinary differential equations
such as Rosenbrock methods, Backward Differentiation Formulas (BDF)
and splitting methods. The performance of our approach is tested in
numerical experiments.
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1 Introduction

The stochastic linear quadratic regulator (SLQR) problem in finite dimensions
has been first studied by Kushner (1962) [32] and Wonham (1968) [47, 48].
Control problems with stochastic coefficients and the corresponding backward
stochastic Riccati equations (BSREs) have been treated in the finite-horizon and
finite-dimensional case by many authors [11, 12, 28, 29, 30, 31]. In [49], one can
find a complete treatment of the SLQR problem in finite dimensions along with
a feedback characterization of the optimal control via a matrix Riccati equation.
Note that although this equation is called stochastic Riccati equation (SRE), it is
a deterministic differential matrix equation. Thus the feedback relation between
the optimal control and the optimal state is deterministic, even though both are
random processes.
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The finite horizon SLQR control problem for a one-dimensional Brownian
motion consists of the controlled state equation

dx(t) = [A(t)x(t) +B(t)u(t) + b(t)] dt+ [C(t)x(t) +D(t)u(t) + d(t)] dW (t),
x(0) = y ∈ Rn, t ∈ [0, T ]

(1)
and the performance index

J(u) =
1

2
E
(∫ T

0

(〈Q(t)x(t), x(t)〉+ 2〈Sx(t), u(t)〉+ 〈R(t)u(t), u(t)〉)dt

+ 〈Gx(T ), x(T )〉
)
.

(2)

The objective is to find the minimum of the functional J over all possible
controls u subject to the condition that x satisfies the state equation (1), where
T > 0, A,B,C,D, d are deterministic matrix-valued functions of suitable dimen-
sions A,C ∈ L∞((0, T ),Rn×n), B,D ∈ L∞((0, T ),Rn×k), b, d ∈ L2((0, T ),Rn)
and W (t) is a Brownian motion defined on (Ω,F,P) over t ∈ [0, T ]. We assume
Q ∈ L∞((0, T ), Sn), S ∈ L∞((0, T ),Rk×n) and R ∈ L∞((0, T ), Sk), G ∈ Sn and
that all the coefficients depend on time t. Some of these assumptions can be
weakened, [49].

If the SLQR problem is well-posed it can be reduced to that of solving the
SRE and the backward stochastic differential equation (BSDE). The SRE has
the form

Ṗ = −(ATP + PA+Q+ CTPC−
−
(
BTP + S +DTPC

)T
(R+DTPD)−1

(
BTP + S +DTPC

)
),

for a.a. t ∈ [0, T ],
P (T ) = G,
R(t) +D(t)TP (t)D(t) > 0 for a.a. t ∈ [0, T ],

(3)
and the BSDE

ϕ̇+
(
A−B(R+DTPD)−1(BTP + S +DTPC)

)T
ϕ+

+
(
C −D(R+DTPD)−1(BTP + S +DTPC)

)T
Pd+ Pb = 0,

for a.a. t ∈ [0, T ]
ϕ(T ) = 0.

(4)
The above derivation requires that R(t) + D(t)TP (t)D(t) is invertible. The
existence and uniqueness of the solutions to these equations are available only
for certain special cases. In many applications, there is no multiplicative noise
associated with the control input u, i.e. D = 0, and there is no weighted cross
term in the cost functional, i.e. S = 0. In this case, the SRE (3) has the
simplified form

Ṗ = −(ATP + PA+Q+ CTPC − PBR−1BTP ),
for a.a. t ∈ [0, T ],

P (T ) = G,
R(t) > 0 for a.a. t ∈ [0, T ].

(5)
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Note that we can solve (5) forward in time, i.e. P (0) = G, and in this way set
up the equation into the usual format of an initial value problem.

In this paper we focus on solving (5) involving multidimensional Brownian,
i.e. we study

Ṗ = ATP + PA+Q+
∑ν
j=1 C

T
j PCj − PBR−1BTP,

for a.a. t ∈ [0, T ],
P (0) = G,
R(t) > 0 for a.a. t ∈ [0, T ].

(6)

Our focus is on large-scale problems arising in the numerical treatment of SQLR
problems governed by stochastic partial differential equations. The infinite
dimensional SLQR problem was solved by Ichikawa in [27] using a dynamic
programming approach. Da Prato [16] and Flandoli [17] later considered the
stochastic LQR for systems driven by analytic semigroups with Dirichlet or
Neumann boundary controls, but with disturbance in the state only. The infi-
nite dimensional LQR with random coefficients has been investigated in [19, 20]
along with the associated backward stochastic Riccati equation. In [37], a novel
approach for solving the stochastic LQR based on the concept of chaos expansion
from white noise analysis is proposed. For a class of control systems known as
singular estimate control systems the stochastic analog of the linear quadratic
problem has been first treated by Hafizoglu [22]. This class captures certain
systems of coupled parabolic/hyperbolic PDEs, with boundary or point control
actions [34, 35, 36]. Recently, a theoretical framework for the stochastic LQR
has been laid for singular estimates control systems in the presence of noise in
the control and in the case of finite time penalization in the performance index
[23]. Considering the general setting described in [23], an approximation scheme
for solving the control problem and the associated Riccati equation has been
proposed in [38].

The numerical solution of the SLQR relies on solving efficiently the associate
Riccati equation. For the deterministic LQR problem, most of the methods for
solving differential Riccati equations, e.g. [2, 7, 33], are based on a low-rank
approximation of the solution, and their performance relies on the rapid decay
of the singular values. This phenomenon is observed singular estimate control
systems in applications, and has been studied in detail by e.g. [1, 18, 40, 39, 45].
Here we generalize these methods for SREs assuming that the decay property
also holds. The assumption is verified empirically in our numerical experiments.

The paper is organized as follows. In Section 2 we solve SREs by ODE
methods such as the Rosenbrock and BDF methods in matrix setting. Then,
in Section 3, we do the same for first- and second-order exponential splitting
schemes. In Section 4, the proposed methods are tested on a few numeri-
cal examples and their efficiency is compared. Finally, Section 5 presents our
conclusions and outlook.
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2 ODE methods in matrix setting

In [7, 8] it is shown that standard ODE methods can efficiently be applied to the
deterministic Riccati differential equation (DRE) in the matrix setting. Here,
we discuss the application of these methods to the SRE. In particular, we focus
on the Rosenbrock and BDF methods.

Let us first consider the Rosenbrock methods, which have proved to be ef-
ficient methods for autonomous DREs. For simplicity we consider the one-
dimensional Brownian motion case, i.e. (5), but the same procedure can be
applied to the multidimensional Brownian motion case. We discretize the time
interval [0, T ] by the equidistant grid {tk}NT

k=1 with step size h = tk+1 − tk, and
set Pk := P (tk). In order to abbreviate the notation, we further introduce

S := BR−1BT

and represent the right-hand side of the equation by the operator F : Rn×n →
Rn×n given by

FP = ATP + PA+Q+ CTPC − PSP.
We note that the Frechét derivative of F at Pk is given by the generalized

Lyapunov operator F
′
(Pk) : Rn×n → Rn×n with

F
′
(Pk)U = (A− SPk)TU + U(A− SPk) + CTUC.

The application of the linear implicit Euler method, as a matrix-valued algo-
rithm, to the SRE (5) now yields

Pk+1 = Pk + hK1,

K1 − h(F
′
(Pk))(K1) = FPk. (7)

Note that K1 represents a n× n matrix. Expanding F
′
(Pk) in (7), we obtain

K1 − h(A− SPk)TK1 − hK1(A− SPk)− hCTK1C = FPk,

and re-arranging terms gives

(h(A− SPk)− 1

2
I)TK1 +K1(h(A− SPk)− 1

2
I) + hCTK1C = −FPk.

Denoting Āk = h(A− SPk)− 1
2I, we can write the method as:

Pk+1 = Pk + hK1, (8)

ĀTkK1 +K1Āk + hCTK1C = −FPk. (9)

Hence, one generalized Lyapunov equation (9) has to be solved in every step.
We consider such equations in Section 2.1. By writing FPk as(

A− SPk −
1

2h
I
)T
Pk + Pk

(
A− SPk −

1

2h
I
)

+Q+ PkSPk +
1

h
Pk + CTPkC,
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it is easily seen that Pk+1 can be computed directly from

ÃTk Pk+1 + Pk+1Ãk + CTPk+1C = −Q− PkSPk −
1

h
Pk, (10)

where Ãk = A− SPk − 1
2hI. This avoids the additional step in (8) but is still a

generalized Lyapunov equation.
The application of the Rosenbrock method of order two proposed in [7, 8],

as a matrix-valued algorithm, to the SRE (5) yields

Pk+1 = Pk +
3

2
hK1 +

1

2
hK2,

K1 − γh(F
′
(Pk))(K1) = FPk, (11)

K2 − γh(F
′
(Pk))(K2) = F(Pk + hK1)− 2K1. (12)

Denoting Âk = γh(A − SPk) − 1
2I and rewriting (11) and (12) similar to (9),

we can write the method as:

Pk+1 = Pk +
3

2
hK1 +

1

2
hK2,

ÂTkK1 +K1Âk + γhCTK1C = −FPk, (13)

ÂTkK2 +K2Âk + γhCTK2C = −F(Pk + hK1) + 2K1. (14)

Thus, two generalized Lyapunov equations (13), (14) have to be solved in every
step. Rewriting the right hand side of (14) as

−FPk + h2K1SK1 + CT (Pk + hK1)C
−(h(Ak+1 − Sk+1Pk)− I)TK1 −K1(h(Ak+1 − Sk+1Pk)− I),

the method can be written in a efficient way.

In the case of multidimensional Brownian motion, the application of a Rosen-
brock method yields essentially the same equations as above, except that the
generalized Lyapunov equations are now of the form

FTk P + PF +

ν∑
j=1

CTj PCj = −H.

Implicit methods. In [15] the author showed that the application of any
implicit method to the deterministic DRE yields an algebraic Riccati equation
(ARE) to be solved in every step. As the structure of the SRE differ from the
DRE in the term CTPC, the application of an implicit method to SRE yields
an ARE with the extra term to be solved in each stage. As an illustration lets
consider the Backward Differentiation Formulae (BDF) method. Applying the
BDF method to the SRE we obtain the matrix valued BDF scheme

Pk+1 =

p∑
j=1

−αjPk+1−j + hβFPk+1,
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where αj , β are the coefficients of the p-step BDF formula, see [3]. This leads
to the difference equation

−Pk+1 + hβ(Q+ATPk+1 + Pk+1A− Pk+1SPk+1 + CTPk+1C)

−
p∑
j=1

αjPk+1−j = 0,

and after re-arranging terms we see that this is the generalized ARE

R(Pk+1) := (hβA− 1

2
I)TPk+1 + Pk+1(hβA− 1

2
I) + hβCTPk+1C

+ (hβQ−
p∑
j=1

αjPk+1−j)− Pk+1(hβS)Pk+1 = 0 .
(15)

The computation of Pk+1 by Newton’s method yields a generalized Lyapunov
equation to be solved in each step. If ∆ denotes the increment Pk+1 ← Pk+1+∆
of the Newton step, then these equations take the form

ǍTk+1∆ + ∆Ǎk+1 + CT∆C =
1

hβ
R(Pk+1) (16)

with Ǎk+1 = A− 1
2hβ I − SPk+1.

2.1 Generalized algebraic Lyapunov and Riccati equations

The most basic operation in both Rosenbrock and BDF methods applied to
SREs requires the solution of generalized Lyapunov equations such as

FTX +XF +

ν∑
j=1

CTj XCj = −Y , (17)

where F is replaced e.g. by Āk in (9), Ãk in (10), Âk in (13) and (14), or Ǎk+1

in (16). Typically, the right hand side is assumed to be nonpositive definite, i.e.
Y ≥ 0 and the solution X is required to be nonnegative definite, i.e. X ≥ 0. This
is relevant, for instance, when we consider (low rank) factorizations X = ZZT .
In the following let F,Cj ∈ Rn×n, j = 1, . . . , ν and define the linear mappings
L,Π : Rn×n → Rn×n by

L(X) = FTX +XF , Π(X) =

ν∑
j=1

CTj XCj . (18)

Here L is a Lyapunov operator, and Π is positive in the sense that X ≥ 0 implies
Π(X) ≥ 0. By σ(T ) we denote the spectrum of a linear mapping T , and by ρ(T )
its spectral radius. It is well-known that σ(L) = {λ+ µ̄

∣∣ λ, µ ∈ σ(F )}, see e.g.
[25, Theorem 4.4.5]. A generalization of Lyapunov’s matrix theorem has been
obtained in [41].
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Theorem 2.1. The following are equivalent.

(a) σ(L + Π) ⊂ C− = {λ ∈ C
∣∣ <λ < 0}

(b) σ(L) ⊂ C− and ρ(L−1Π) < 1

(c) ∃Y > 0 : ∃X > 0 : L(X) + Π(X) = −Y

(d) ∀Y > 0 : ∃X > 0 : L(X) + Π(X) = −Y

Note that σ(L) ⊂ C− if and only if σ(F ) ⊂ C−. Consequently we restrict
our attention to the so called stable case, where σ(F ) ⊂ C− and ρ(L−1Π) < 1.
It is easy to see that this assumption holds for suffciently small h > 0 in all our
equations (9), (10), (13), (14), and (16). Conversely, we should keep in mind
that the stability requirement implies an upper bound for the admissible step
size in the methods described above.
A direct solution of (17), e.g. based on a Kronecker product representation
of L and Π has prohibitive complexity O(n6). Therefore, iterative methods
are preferable. Since for the standard Lyapunov equation (without Π) efficient
methods like the Bartels-Stewart algorithm or low-rank alternating direction
iteration (ADI) techniques are available (with complexity O(n3) or less), it is
natural to exploit the given splitting L + Π and to use L as a preconditioner.
The iterative scheme

Xk+1 = −L−1Π(Xk)− L−1(Y ) (19)

is convergent, because ρ(L−1Π) < 1. A common variant of (19) is obtained if
the preconditioner L is replaced by an ADI-approximation, see [14]. In [4] and
[42] these approaches have been extended to allow for low-rank approximations
to X. We sketch the low-rank ADI-based variant suggested by [4], which we
use in our computations. The underlying assumption is that Y and X can be
approximated well by low rank factorizations Y ≈ Y0Y T0 and X ≈ ZZT .

For given positive shift parameters p0, p1, . . ., consider the iteration

Xk+1 = (F − pkI)−T (F + pkI)TXk(F + pkI)(F − pkI)−1

+ 2pk(F − pkI)−T
(
Π(Xk) + Y T0 Y0

)
(F − pkI)−1 , (20)

which is a convergent modification of (19). If X0 = 0 then X1 = Z1Z
T
1 with

Z1 =
√

2pk(F − pkI)−1Y0 and Xk+1 = Zk+1Z
T
k+1 with

Zk+1 = (F − pkI)−1
[
(F + pkI)Zk,

√
2pkC1Zk, . . . ,

√
2pkCνZk,

√
2pkY0

]
.

(21)
Thus the iteration can be carried out for the factors Zk of Xk.

Remark 2.1. (a) Note that if Y0 has r columns, then Zk has (ν+2)kr columns.
To keep the rank ofXk small, in each step a column compression is applied,
where Zk is replaced by a truncated singular value decomposition with
fixed error tolerance.

7



(b) Note also that the special structure of F can be exploited in evaluating
(21). In our applications, F is of the form F = A − SP , where both
S and P are of low rank. This low-rank perturbation can be efficiently
handled by use of the Woodbury matrix inversion formula. Furthermore,
the matrix A typically arises from the discretization of a partial differential
operator. The evaluation of the remaining (A− pkI)−1 can thus be done
efficiently using specialized sparse solvers.

(c) A good choice of ADI-parameters is also essential. Following [4] we use
the optimal shifts for the standard case from [46], see also [14].

Apart from the generalized Lyapunov equation, the generalized algebraic
Riccati equation (15) plays a role in the BDF method. It is of the general form

R(X) = FTX +XF +

ν∑
j=1

CTj XCj +Q−XSX = 0 . (22)

Hamiltonian methods designed for standard Riccati equations can not be ex-
tended to (22) in an obvious way. Instead, Newton type iterations are typically
used see e.g. [13, 48]. These exhibit a remarkable non-local convergence be-
haviour. Let again L and Π be defined by (18). If σ(L + Π) ⊂ C− (which in
our applications is fulfilled for sufficiently small h), then the Newton iteration
applied to (22) starting at X0 = 0 is guaranteed to converge to the largest so-
lution of (22). As mentioned above, each step of the Newton iteration requires
the solution of a generalized Lyapunov equation.

3 Splitting methods

The BDF and Rosenbrock methods treat either the full vector field F or a
linearization thereof, but the final step in both methods is to split a number of
generalized Lyapunov equations. In contrast to this, a splitting method directly
splits the right-hand side into parts, and considers each part separately, see
e.g. [26, Section IV] or [21, Section II.5]. The splitting is thus in this case at
the top level, rather than at the bottom level.
In the SRE case, we have the natural three-term decomposition

F = F1 + F2 + F3,

where

F1P = ATP + PA+Q,

F2P =

ν∑
j=1

CTj PCj = Π(P ) and

F3P = −PSP.
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In the following we consider only the case of one-dimensional Brownian motion,
i.e. F2P = CTPC, but the approach extends directly to the multidimensional
case.

The idea is that it is easier or cheaper to approximate the solution to each
of the subproblems Ṗ = FkP than to the full problem Ṗ = FP . Let Tk(t)P0

denote the solution to the subproblem Ṗ = FkP , P (0) = P0. Then the simplest
splitting scheme is given by the iteration

Pk+1 = T1(h)T2(h)T3(h)Pk,

i.e. we simply evolve the dynamics of F3 over one time step, then consider the
F2 dynamics and finally F1.

As shown in [44], we can give explicit representations for T1(t) and T3(t),
and these can be efficiently evaluated in a low-rank setting. Unfortunately, there
does not seem to be a similarly useful representation for T2(t). However, as the
matrix C typically only contains a few small elements and does not give rise to a
stiff F2, we can approximate the action of T2(t) well with an explicit numerical
method. We therefore consider the following modified Lie and Strang splitting
schemes, given by

Pk+1 = T1(h)(I + hF2)T3(h)Pk and

Pk+1 = T1(h/2)T3(h/2)(I + hF2 + h2/2F2
2)T3(h/2)T1(h/2)Pk,

respectively. Here, either the explicit Euler method or the midpoint rule is used
to approximate the action of T2(h).

In the rest of this section, we briefly recap how to implement these methods
in a low-rank fashion. For details, we refer to [44]. As previously, let P = ZZT

and Q = Q0Q
T
0 be given low-rank factorizations, and consider first T1(h)P .

This can be written as

T1(h)P = ehA
T

P ehA +

∫ h

0

esA
T

QesAds.

By approximating the integral by a (high-order) quadrature formula with weights
wk and nodes τk we see that a low-rank approximation WWT to T1(h)ZZT is
given by

W =
[
ehA

T

Z,
√
hw1eτ1A

T

Q0,
√
hw2eτ2A

T

Q0, . . . ,
√
hwse

τsA
T

Q0

]
.

The above notation means that the matrices have been placed side by side. As
it is highly probable that this introduces many linearly dependent columns, a
column compression technique should be applied to W to find a more suitable
low-rank factor.

Consider next the middle term F2. Clearly,

W =
[
Z,
√
hCTZ

]
and W =

[
Z,
√
hCTZ, h/

√
2CTCTZ

]
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are low-rank factors of (I+hF2)P and (I+hF2 +h2/2F2
2), respectively. Again,

column compression should be applied after forming these factors.
Finally, one can show that the solution to the third subproblem is given by

T3(h)P = (I + hPS)−1P,

and an application of the Woodbury matrix inversion formula shows that

(I + hZZTS)−1ZZT = Z(I + hZTSZ)−1ZT .

Since S is positive semi-definite, we can Cholesky factorize (I + hZTSZ)−1 =
LLT , and thereby acquire a low-rank factorization W = ZL. This operation
is cheap since (I + hZTSZ)−1 is a small matrix when Z has few columns. We
note that no column compression is needed here, as the new low-rank factor W
has exactly the same rank as Z.

Remark 3.1. We could also consider a splitting where F1P = ATP + PA and
F2P = CTPC + Q. This means that the evaluation of the action of T1(h) is
simplified, as the integral term disappears. However, experimentally this leads
to an error amplification with a factor 3-4 for the modified Lie splitting and 6-8
for modified Strang. We therefore argue that the one-time approximation of the
integral term is worthwhile.

Remark 3.2. If C is symmetric with many zero eigenvalues, we can use the exact
solution for the F2 subproblem rather than explicit approximations. Denote by
vecP the vectorization of P , i.e. the vector formed by stacking its columns on
top of each other. By the well-known formula

vecABC = (CT ⊗A) vecB,

see e.g. [24], we get

vecT2(t)P0 = etC
T⊗CT

vecP0. (23)

Consider first a diagonal C. In this case, also E = etC
T⊗CT

is diagonal, with
Ei,j = etcicj . By the Schur product theorem [24, Theorem 7.5.3 and Corollary
7.5.9], both E and E � (ZZT )1:k,1:k are positive semi-definite. Hence if k is
reasonably small, we can cheaply compute a low-rank factorization

WWT := E � (Z1:k,:Z
T
1:k,:).

A low-rank factorization Y Y T of T2(t)ZZT is then given by

Y =
[
Z,W0

]
,

where W0 is formed by adding N − k zeros in every column of W .
Now assume that C = V DV T is a reduced eigendecomposition, where D ∈

Rk×k is diagonal and V ∈ RN×k is such that V TV = I. Then it is easily verified
that

ehC
T⊗CT

= (V ⊗ V )ehD⊗D(V T ⊗ V T ).

Hence, this case reduces to the procedure described above for diagonal C, with
the difference that it should be applied to V TZ instead of Z and one should
form VW instead of W . Unfortunately, it is unclear how to generalize this
approach to the nonsymmetric case.
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4 Numerical experiments

In order to validate the accuracy of the described methods, as well as compare
their respective efficiency, we present the results of three different numerical
experiments. The algorithms described in the previous sections were all imple-
mented in MATLAB.

To compute the errors of our approximations, we need a reference solution
to compare to. We are not aware of any example where the exact solution
is known, so we are faced with two possibilities: compute a reference solution
by using our own methods with a smaller step size, or use a different, highly
accurate method.

In the first experiment, we followed the latter approach by unrolling the
matrices into vectors and using MATLAB’s built-in solver ODE15s. This is
extremely expensive (in fact this is one of the motivations for having an efficient
large-scale solver) and we can therefore only consider a very small-scale problem.
For the two latter experiments, we computed the reference solution by the Strang
splitting method, with a temporal step size that was half as large as the one
used for the most accurate approximation. In all cases, we computed relative
errors in the temporal max-norm, that is, the error for the approximation u is
given by

max
j=1,...,NT

‖u(j)− uref(j)‖
/

max
j=1,...,NT

‖uref(j)‖.

4.1 A small-scale verification problem

We first considered a small-scale case of 10× 10 matrices, where we set A, B, C
and Q to all consist of random numbers, in such a way that A is negative definite
and Q is positive definite. The initial value P0 is taken to be the zero matrix and
is represented by the n×1 zero vector. We integrated the problem over the time
interval [0, 1], and used the tolerance of 10−7 in the Lyapunov equation solver
and a RRQR tolerance of 10−14 for the column compression. For the reference
solution computed by MATLAB’s ODE15s, we used an absolute tolerance of
10−10 and a relative tolerance of 10−8. We applied all the different methods,
for each of the different temporal step sizes h = 2−k, k = 3, . . . , 10.

The results are shown in Figure 1. The left plot shows the error plotted
against the step size in a loglog-scale, which demonstrates that the methods
all converge to the solution of the problem. The splitting methods exhibit
the expected order of convergence for all the step sizes, while the BDF and
Rosenbrock have some trouble for the larger step sizes. This behavior is handled
somewhat by using a lower tolerance for the Lyapunov equation solver, but this
of course also increases the computational cost. The right plot shows the error
plotted against the computation time, which demonstrates that the splitting
schemes are better in terms of efficiency. For errors close to 4 · 10−3, the BDF1
method is almost 10 times as slow as the Rosenbrock method which in turn
is about 10 times as slow as the Lie splitting. As expected, the second-order
Strang splitting is faster than all the other first-order methods for small step
sizes, but also for the large step sizes.
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Figure 1: Left: Error versus temporal step size for the problem in Section 4.1.
The methods converge with the expected orders. Right: Error versus compu-
tation time for the same problem. The splitting methods are clearly superior
to the Rosenbrock method, which is itself much better than the BDF1 method.
The strange bends in the curves for large step sizes are due to inaccurate timing
for such small computation times.

4.2 A medium-scale problem

Next, we considered a SLQ problem as described in Section 1, for a stochastic
heat transfer model. We let A be the discretization of the Laplacian on the
unit square [0, 1]2 and employ fixed boundary conditions given by x = uj ,
j = 1, 2, 3, on three of the edges. On the final edge, we use the Robin condition
n∇x = 0.5(0.5 + dW )x. That is, the temperature can be directly controlled on
three sides, and the leakage along the final edge is noise-dependent. After spatial
discretization, this gives a full matrix B ∈ Rn×3 and a matrix C = C1 ∈ Rn×n
with only n nonzero elements that are located on the diagonal. The output is
taken to be the mean of x, which gives Q = qqT where q ∈ Rn×1 has constant
elements. Finally, we choose R = I. This problem has also been used in e.g. [6]
and a similar problem has been described in detail in e.g. [5]. We therefore refer
to the latter article for details on the spatial discretization.

We take nx = 25 points in each spatial direction, which gives a system of
size n = 252 = 625. We use the temporal step sizes h = 2−k, k = 3, . . . , 10,
on the time interval [0, 1], a tolerance of 10−6 for the Lyapunov equation solver
and a RRQR tolerance of 10−12. The results are shown in Figure 2. The left
plot demonstrates that all the first-order methods converge to the solution of
the problem as expected, but the Strang splitting seems to suffer from a slight
order reduction except for at the smallest step sizes. This calls for a proper
error analysis, but that is out of the scope of this article. The efficiency plot to
the right is similar to that of the previous problem in that the splitting methods
are clearly superior and that the BDF method is slower than the Rosenbrock
method.

We note that this problem is not very large either, and this is due to the
excessive computation times required for the BDF and Rosenbrock methods.
Essentially, the BDF and Rosenbrock methods have to solve an algebraic Ric-
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Figure 2: Left: Error versus temporal step size for the problem in Section 4.2.
The methods converge with the expected orders except for the Strang splitting
that exhibits order reduction for larger step sizes. Right: Error versus compu-
tation time for the same problem. Again the splitting methods are superior to
the Rosenbrock method, which is itself much better than the BDF1 method.

cati equation in each time step, and the computation time per step is in line
with previous results on algebraic Riccati equations, see e.g. [10] . Unfortu-
nately, we therefore even if we benefit from recent algorithmic progress in solv-
ing large-scale AREs and Lyapunov equations [9], we do not expect to be able
to significantly improve the efficiency of the implementation for these methods.

4.3 A large-scale problem

As a final experiment, we considered also the previous problem but with nx =
100. This yields a problem size of n = 10000. In view of the previous section,
applying the BDF and Rosenbrock methods is unfeasible and we therefore only
used the splitting methods in this case. We again use the temporal step sizes
h = 2−k, k = 3, . . . , 10, on the time interval [0, 1], and a RRQR tolerance of
10−12. The results are shown in Figure 3.

We observe that the Lie splitting exhibits approximately order 1 convergence,
and for small step sizes the Strang splitting approaches the expected order 2
behaviour. However, for larger step sizes, the order reduction that was already
observed in the previous example is more pronounced. In addition, for the
largest step sizes loss of stability also seems to be a problem. However, since
these temporal step sizes are considerably larger than the spatial mesh size, this
is a minor issue. Again, this behaviour clearly calls for a proper error analysis.

It is also interesting to note that due to the peculiar error behaviour, the
Strang splitting is now only more efficient when small errors are required. If less
accurate approximations are required, the Lie splitting can be used instead. It
should be noted, however, that the version of Strang splitting proposed here uses
the most expensive ordering of the operators. This choice was made in order
that the stiff operator F1 be evaluated last. This is often beneficial, see e.g.[43],
but the effects of different, less expensive, orderings should be investigated when
considering a specific application.
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Figure 3: Left: Error versus temporal step size for the problem in Section 4.3.
The splitting methods converge to the solution with convergence orders that for
small step sizes are approximately 1 and 2, respectively. For larger step sizes,
the Strang splitting seems to be affected by order reduction as well as stability
issues. Right: Error versus computation time for the same problem. We see
that now the Strang splitting is only more efficient if small errors are required,
and for larger errors the Lie splitting is more efficient.

5 Conclusions

We have studied the numerical solution of the finite horizon stochastic lin-
ear quadratic optimal control problem. The focus was on large-scale Riccati
equations arising in problems governed by stochastic partial differential equa-
tions and we have proposed methods based on low-rank matrix versions of the
Rosenbrock, Backward Differentiation Formulas and splitting methods. In gen-
eral, splitting methods seem to be one order faster than the ODE methods in
the matrix setting. Having an efficient solver for SREs will enable one to deal
with real life applications.

Acknowledgments

The authors would like to thank Peter Benner and Tobias Breiten for providing
their code for computing generalized Lyapunov and generalized algebraic Ric-
cati equations. H. Mena was supported by the project Solution of large-scale
Lyapunov Differential Equations (P 27926) founded by the Austrian Science
Foundation FWF. T. Stillfjord was partially supported by the Swedish Research
Council.

References

[1] A. Antoulas, D. Sorensen, and Y. Zhou, On the decay rate of Hankel
singular values and related issues, Syst. Contr. Lett., 46 (2000), pp. 323–342.

14



[2] E. Arias, V. Hernández, J. Ibanes and J. Peinado,A family of BDF
algorithms for solving Differential Matrix Riccati Equations using adaptive
techniques, Procedia Computer Science, Vol. 1, pp. 2569–2577.

[3] U. Ascher and L. Petzold, Computer Methods for Ordinary Differential
Equations and Differential-Algebraic Equations, PA, SIAM, Philadelphia,
(1998).

[4] P. Benner and T. Breiten, Low rank methods for a class of general-
ized Lyapunov equations and related issues, Numer. Math., 124(3), (2013),
pp. 441–470.

[5] P. Benner and T. Damm, Lyapunov equations, energy functionals, and
model order reduction of bilinear and stochastic systems, SIAM J. Control
Optim., 49(2) (2011), pp. 686–711.

[6] P. Benner, T. Damm and Y. Rodriguez Cruz, Dual pairs of generalized
Lyapunov inequalities and balanced truncation of stochastic linear systems,
Preprint (2015).

[7] P. Benner and H. Mena, Numerical solution of the infinite-dimensional
LQR-problem and the associated differential Riccati equations, Tech. Report
MPIMD/12-13, MPI Magdeburg Preprint, (2012).

[8] P. Benner and H. Mena, Rosenbrock methods for solving differential
Riccati equations, IEEE Transactions on Automatic Control, 58 (2013),
pp. 2950–2957.
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A. Tuffaha, The stochastic linear quadratic problem with singular esti-
mates, Preprint 2015.

[24] R. A. Horn, C. R. Johnson, Matrix Analysis, 2nd ed. Cambridge, U. K. :
Cambridge University Press, 1985.

[25] R. A. Horn, C. R. Johnson, Topics in Matrix Analysis, Cambridge,
U. K. : Cambridge University Press, 1991.

[26] W. Hundsdorfer, J. G. Verwer, Numerical solution of time-dependent
advection-diffusion-reaction equations, vol. 33, Springer Series in Comput.
Math. Berlin, Germany: Springer, 2003.

[27] A. Ichikawa., Dynamic programming approach to stochastic evolution
equations, SIAM J. Control. Optim. 17(1): 152–174, 1979.

[28] M. Kohlmann and S. Tang, New developments in backward stochastic
Riccati equations and their applications, In: Mathematical Finance, Kon-
stanz, 2000. Trends Math. Birkhäuser, Basel, 2001.
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