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SINGULAR VALUE DECAY OF OPERATOR-VALUED
DIFFERENTIAL LYAPUNOV AND RICCATI EQUATIONS∗

TONY STILLFJORD†

Abstract. We consider operator-valued differential Lyapunov and Riccati equations, where the
operators B and C may be relatively unbounded with respect to A (in the standard notation). In this
setting, we prove that the singular values of the solutions decay fast under certain conditions. In fact,
the decay is exponential in the negative square root if A generates an analytic semigroup and the
range of C has finite dimension. This extends previous similar results for algebraic equations to the
differential case. When the initial condition is zero, we also show that the singular values converge
to zero as time goes to zero, with a certain rate that depends on the degree of unboundedness of
C. A fast decay of the singular values corresponds to a low numerical rank, which is a critical
feature in large-scale applications. The results reported here provide a theoretical foundation for the
observation that, in practice, a low-rank factorization usually exists.
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1. Introduction. We consider differential Lyapunov equations (DLEs) and dif-
ferential Riccati equations (DREs) of the forms

(1.1) Ṗ = A∗P + PA+ C∗C, P (0) = G∗G,

and

(1.2) Ṗ = A∗P + PA+ C∗C − PBB∗P, P (0) = G∗G,

respectively. Such equations arise in many different areas, e.g., in optimal/robust con-
trol, optimal filtering, spectral factorizations, H∞-control, differential games, etc. [1,
3, 18, 32].

A typical application for DREs is a linear quadratic regulator (LQR) problem,
where one seeks to control the output y = Cx given the state equation ẋ = Ax+Bu
by varying the input u. In the case of a finite time cost function,

J(u) =

∫ T

0

‖y(t)‖2 + ‖u(t)‖2 dt+ ‖Gx(T )‖2 ,

it is well known that the optimal input function uopt is given in state feedback form. In
particular, uopt(t) = −B∗P (T−t)x(t), where P is the solution to the DRE (1.2) [9, 21].

The solution to the DLE, on the other hand, yields the (time-limited) observability
Gramian of the corresponding LQR system. It is used in applications such as model
order reduction [5, 15] for determining which states x have negligible effect on the
input-output relation u 7→ y, and which can therefore safely be discarded from the
system [19, 8].
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In the continuous case, (1.1) and (1.2) are operator valued. After a spatial dis-
cretization they become matrix valued. Approximating their solutions by numerical
computations is thus, if done naively, much more expensive than simply approxi-
mating, e.g., the corresponding vector-valued equation ẋ = Ax. A standard way to
decrease the computational complexity is to utilize structural properties of the solu-
tions. A commonly used such property is that of low numerical rank [23, 20, 38], i.e.,
a fast (often exponential) decay of the singular values. This allows us to approximate
P (t) ≈ L(t)L(t)∗, where L(t) is of finite rank. In the matrix-valued setting, we would
have P (t) ∈ Rn×n and L(t) ∈ Rn×r with r � n.

While there exist results on when such low numerical rank is to be expected for
algebraic Lyapunov and Riccati equations (i.e., the stationary counterparts of (1.1)
and (1.2)) (see, e.g., [2, 34, 4, 6, 31, 7, 16, 29]), the differential case has so far been
neglected in the literature.

The aim of this article is to remedy this situation and provide criteria on A, B,
and C that guarantee a certain decay of the singular values {σk}∞k=1 of the solutions to
(1.1) and (1.2). We consider the operator-valued case, with the standard assumption
that A generates an analytic semigroup. In the LQR setting, this corresponds to the
control of abstract parabolic problems (including, for example, heat flows and wave
equations with strong damping). We allow relatively unbounded operators B and C,
which means that we can treat various forms of boundary control and observation. In
this setting, we follow the approach suggested in [29] for algebraic equations. There,

a decay of the form σk ≤ Me−γ
√
k was shown, i.e., we cannot expect exponential

decay but only exponential in the square root. The main results of the present article
demonstrate that this extends to the differential case, under similar assumptions. In
the case that G = 0 (and hence P (0) = 0), our bounds additionally show that the
singular values converge to 0 as t→ 0 with a rate t1−2α, where α is a measure of how
unbounded the output operator C is.

An outline of the article is as follows: In section 2 we specify the abstract
framework, state the assumptions on the operators, and recall some resulting prop-
erties of the solutions to (1.1) and (1.2). Then in section 3 we use the concept of
sinc quadrature to show that certain finite-rank operators approximate the integral∫ t

0

(
CesA·, CesA·

)
ds well. Since this is in fact the solution to (1.1) when G = 0, the

main results for DLEs then follow quickly. We generalize these results to DREs in
section 4 by factorizing the system using output and input-output mappings. Finally,
in section 5, we perform a number of numerical experiments on discretized versions
of the equations, which verify the theoretical statements.

2. Preliminaries. In the operator-valued case, (1.1) and (1.2) need to be inter-
preted in an appropriate sense. Here, we mainly follow [21] (see also [10]), and outline
the ideas for the DRE (1.2) since all the results carry over to the DLE (1.1) by setting
B = 0. Thus, let H, Y , U , and Z be Hilbert spaces, and let the following operators
be given: the (unbounded) state operator A : D(A) ⊂ H → H, the input operator
B : U → D(A∗)′, the output operator C : D(A)→ Y , and the final state penalization
operator G : H → Z. This corresponds to problems arising from the LQR setting.

By A∗ we mean the adjoint of A with respect to the inner product on H, and
D(A∗)′ denotes the dual space of D(A∗), also with respect to the H-topology. With
the proper interpretation (see, e.g., [21]), it is a superset of H; in fact, it is the
completion of H in the norm

∥∥A−1·
∥∥
H

. Additionally, for general Hilbert spaces X
and Y we use the notation L(X,Y ) to denote the set of linear bounded operators
from X to Y .
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Remark 2.1. In order that the notation conforms to the usual evolution equation
setting, we have changed the direction of time so that P (0) = G∗G is the given
condition rather than P (T ) = G∗G as in [21]. The only effect of this is to change the
signs of all the terms on the right-hand side.

Our main assumption is the following.

Assumption 2.2. The operator A : D(A) ⊂ H → H is the generator of a strongly
continuous analytic semigroup etA on H.

This means that there exists a δ ∈ (0, π/2] such that z 7→ ezA is analytic on the
sector ∆δ = {z ∈ C ; z 6= 0, | arg(z)| < δ}. Further, there exist constants ω ∈ R
and M ≥ 0 such that the fractional powers (ωI − A)γ are well-defined, and we have
the inequalities

∥∥etA
∥∥ ≤ Meωt and

∥∥(ωI −A)γetA
∥∥ ≤ M(1 + t−γ)eωt; see, e.g., [35,

section 3.10]. Here, ω < 0 corresponds to the stable case, but we allow ω > 0 too. We
also note that A∗ is the generator of etA

∗
= (etA)∗.

Further, we allow both B and C to be unbounded operators, but not too un-
bounded. In particular, we make the following assumption.

Assumption 2.3. The operator B : U → D(A∗)′ is relatively bounded in the sense
that there is a β ∈ [0, 1) such that (ωI −A)−βB ∈ L(U,H).

Assumption 2.4. The operator C : D((ωI−A)α)→ Y is relatively bounded in the
sense that C(ωI − A)−α ∈ L(H,Y ) for 0 ≤ α < min(1 − β, 1/2) with the parameter
β from Assumption 2.3.

Finally, G needs to provide sufficient smoothing to compensate for the roughness
of B.

Assumption 2.5. The operator G : H → Z is bounded. If β ≥ 1/2, there should
also exist a θ ≥ β − 1/2 such that G(ωI −A)θ : H → Z.

Remark 2.6. In the DLE case, we have B = 0. Assumption 2.3 is thus always
satisfied and there is no extra restriction on α in Assumption 2.4 except α ∈ [0, 1/2).

Remark 2.7. Assumption 2.5 is marginally stronger than the assumption that
(ωI − A∗)θG∗G ∈ L(H), θ > 2β − 1, which is made in [21]. We use Assumption 2.5
for compatibility with results from the Salamon/Weiss/Staffans framework [35], but
it can most likely be weakened to the one in [21].

Under Assumptions 2.2 to 2.5, the DRE (1.2) possesses a classical solution t 7→
P (t) ∈ L(H); see, e.g., [21, Theorem 1.2.2.1]. This solution additionally solves the
following integral equation for all x, y ∈ H, and vice versa:

(2.1)

(P (t)x, y) =
(
GetAx,GetAy

)
+

∫ t

0

(
CesAx,CesAy

)
ds

−
∫ t

0

(
B∗P (s)esAx,B∗P (s)esAy

)
ds.

Combining Assumptions 2.2 and 2.4 shows that CesA ∈ L(H,Y ) for s > 0. This
actually holds on every subset of the sector of analyticity ∆δ, as demonstrated, e.g.,
in [29]. In particular, for every a ∈ [0, 1) there exist positive constants Ma and ω such
that

∥∥CezA
∥∥
L(H,Y )

≤ Ma(1 + |z|−α)eω<(z) for all z ∈ ∆aδ. The constants Ma go to

infinity as a → 1, i.e., as we approach the limit of analyticity. However, by simply
redefining δ as, e.g., δ/2 we can always get a uniform estimate. In the following, we
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will therefore omit the dependence on a and write

(2.2)
∥∥CezA

∥∥
L(H,Y )

≤M(1 + |z|−α)eω<(z), z ∈ ∆δ,

for two positive constants M and ω. Since α < 1/2, |z|−2α is integrable at 0 and the
first integral term in (2.1) is therefore well-defined. That the second integral term is
well-defined under Assumptions 2.2 to 2.5 is less straightforward, due to the presence
of P (s) and the fact that β is allowed to take values in [1/2, 1). We refer to [21,
Chapter 1].

3. Lyapunov equations. Let us first consider the Lyapunov case (1.1). Re-
stricting (2.1) by setting B = 0 shows that

(3.1) (P (t)x, y) =
(
GetAx,GetAy

)
+

∫ t

0

(
CesAx,CesAy

)
ds,

which provides a closed-form expression for the solution P . For x, y ∈ D(A) we denote
the integrand by F ,

(3.2) F (z) =
(
CezAx,CezAy

)
,

and note that in fact F : ∆δ → C. By (2.2), for all x, y ∈ D(A) we have the bound

(3.3) |F (z)| ≤ M2

|z|2α
e2ω<(z) ‖x‖ ‖y‖ .

Our aim is now to approximate the integral
∫ t

0
F (s) ds by sinc quadrature, which

converges exponentially in the number of quadrature nodes. The basic idea is to map
the interval (0, t) onto the real line, apply the trapezoidal rule, use decay properties
of F at ±∞, and then transform back. The proof uses complex analysis and thus
requires us to consider (0, t) as a subset of a domain in C rather than a real interval.
In our case, the appropriate mapping is φt : C → C, φt(z) = ln z

t−z with inverse

ψt : C→ C, ψt(w) = tew

ew+1 . The function φt maps the eye-shaped domain

Dd
E(t) =

{
z ∈ C ;

∣∣∣∣arg
( z

t− z

)∣∣∣∣ < d

}
,

where 0 < d < π/2, onto the infinite strip

Dd
S(t) = {w ∈ C ; |=w| < d}.

Here, of course, Dd
E(t) ⊃ [0, t]. See Figure 1 for an illustration of these domains.

The following result is due to Lund and Bowers [25], inspired by [36]. Here, as
well as throughout the rest of the paper, we use the letter M to denote a generic
constant that does not depend on t. It is not necessarily the same M as in (2.2) and
(3.3).

Theorem 3.1 (see [25, Theorem 3.8]). Let f be an analytic function on Dd
E(t)

that for some r ∈ (0, 1) satisfies the condition

(3.4)

∫
ψt(u+L)

|f(z)||dz| = O(|u|r), u→ ±∞,
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ew+1

Fig. 1. The transformations φt, ψt and the domains DdE(t) (shaded, left), DdS(t) (shaded, right).

where L = {iv ; |v| ≤ d}. Further assume that

(3.5) B(f) := lim
γ→∂DdE(t)

∫
γ

|f(z)|| dz| <∞,

where γ denotes any closed simple contour in Dd
E(t), and that there are positive con-

stants M , ρ, and µ such that

(3.6)

∣∣∣∣ f(z)

φ′t(z)

∣∣∣∣ ≤M
{

e−ρ|φt(z)| ∀z ∈ ψt
(
(−∞, 0)

)
,

e−µ|φt(z)| ∀z ∈ ψt
(
[0,−∞)

)
.

Choose

n =
⌈ ρ
µ
m+ 1

⌉
, h =

(
2πd

ρm

)1/2

,

with m a nonnegative integer large enough that h ≤ 2πd
ln 2 , and define the quadrature

nodes zk and weights wk by

zk = ψt(kh) =
tekh

ekh + 1
, wk =

(
φ′t(zk)

)−1

=
tekh

(ekh + 1)2
.

Then it holds that∣∣∣∣∣
∫ t

0

f(z) dz − h
n∑

k=−m

wkf(zk)

∣∣∣∣∣ ≤
(
M

ρ
+
M

µ
+ 2B(f)

)
e−(2πρdm)1/2

.

Specifying this theorem to the function F given in (3.2) leads to the following.

Theorem 3.2. Let Assumptions 2.2 and 2.4 be satisfied, and let h, n, zk, and
wk be chosen as in Theorem 3.1 with d = δ. Then there is a positive constant M ,
independent of t, x, and y, but dependent on α, such that∣∣∣∣∣

∫ t

0

F (z) dz − h
n∑

k=−m

wkF (zk)

∣∣∣∣∣ ≤Mt1−2αe−(2π(1−2α)δm)1/2

‖x‖ ‖y‖ .



SINGULAR VALUE DECAY OF OPERATOR-VALUED EQUATIONS 3603

Proof. We verify the conditions of Theorem 3.1. Since the domain Dδ
E(t) is a

subset of the cone {w ∈ C ; | argw| ≤ δ} for any t > 0, the function F is clearly
analytic on Dδ

E(t). Suppose that z = ψt(u+ iv), where |v| ≤ δ. Then∣∣∣∣dzdv

∣∣∣∣ =
teu

|eueiv + 1|2
≤ tmin(eu, e−u) ≤ t,

since δ < π/2 means that |eueiv + 1| ≥ max(1, eu). Hence

∫
ψt(u+L)

|F (z)||dz| ≤
∫ δ

−δ

∣∣∣∣F( teueiv

eueiv + 1

)∣∣∣∣t dv

≤Mt

∫ δ

−δ

∣∣∣∣ teueiv

eueiv + 1

∣∣∣∣−2α

dv

≤ 2Mπt1−2α,

where we have used (3.3) as well as the estimate e2ω<(z) ≤ max(1, e2ωT ) ≤ M in the
second step and the inequality |eueiv + 1| ≤ eu + 1 ≤ 2eu in the third step. As this
bound is independent of u and 1− 2α > 0 due to Assumption 2.4, the first condition
(3.4) is satisfied.

To check the second condition, we make a change of variables w = η(z) = z
t−z .

It is easily seen that η maps the boundary of Dδ
E(t) onto the rays {re±iδ ; r ≥ 0},

that the inverse is given by z = η−1(w) = tw
1+w , and that the derivative of the inverse

is given by w 7→ t
(1+w)2 . Denoting the top and bottom parts of ∂Dδ

E(t) by ∂D+ and

∂D−, respectively, we thus have B(F ) =
∫
∂D+
|F (z)||dz|+

∫
∂D−
|F (z)||dz|, where

∫
∂D±

|F (z)|| dz| =
∫ ∞

0

∣∣∣∣F( tre±iδ

1 + re±iδ

)∣∣∣∣t∣∣1 + re±iδ
∣∣−2

dr

≤M
∫ ∞

0

∣∣∣∣ tre±iδ

1 + re±iδ

∣∣∣∣−2α

t
∣∣1 + re±iδ

∣∣−2
dr,

again using (3.3) and bounding the exponential term by max(1, e2ωT ). As |1+re±iδ| ≥
max(1, r) we get∫

∂D±

|F (z)||dz| ≤ t1−2α

(∫ 1

0

r−2α dr +

∫ ∞
1

r−2 dr

)
,

so that, in conclusion,

B(F ) ≤ 2t1−2α

(
1

1− 2α
+ 1

)
.

Finally, we check condition (3.6). A simple computation shows that φ′t(z) =
t

z(t−z) . Clearly, ψt((−∞, 0)) = (0, t/2) =: Γ1 and ψt([0,∞)) = [t/2, t) =: Γ2, which

means that on these intervals we have

e−ρ|φt(z)| = zρ(t− z)−ρ and e−µ|φt(z)| = z−µ(t− z)µ.
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On Γ1, |t− z| ≤ t, so by (3.3) we get∣∣∣∣ F (z)

φ′t(z)

∣∣∣∣ ≤M |z|−2αe2ω<(z)|z||t− z|t−1 ≤M |z|1−2αt−1|t− z|2α−1|t− z|2−2α

≤Mt1−2α|z|1−2α|t− z|2α−1,

i.e., the desired bound holds with ρ = 1 − 2α and constant Mt1−2α, where M is
independent of t. On Γ2, |z| ≤ t, and we similarly get∣∣∣∣ F (z)

φ′t(z)

∣∣∣∣ ≤M |z|1−2α|t− z|t−1 ≤M |z|−1|t− z||z|2−2αt−1

≤Mt1−2α|z|−1|t− z|,

i.e., the desired bound holds with µ = 1 and constant Mt1−2α, where M is again
independent of t.

We denote the singular values of P by σk(P ) and order them in decreasing order.
Let us first consider the case when G = 0.

Theorem 3.3. Let Assumptions 2.2 and 2.4 be satisfied, with the output space Y
having finite dimension dimY ≥ 1. Further assume that G = 0. Then the singular
values of the solution P to the DLE (3.1) satisfy

σk(P (t)) ≤Mt1−2αe−η
√
k−2 dimY

for k ≥ 4 dimY , where M and η are positive constants independent of t but dependent
on α.

After our preliminary work, the proof follows almost exactly as in [29].

Proof. We have

(P (t)x, y) =

∫ t

0

F (z) dz.

Now define n, zk, and wk as in Theorem 3.2 and define the approximation Pm by

Pm = h

n∑
k=−m

wkezkA
∗
C∗CezkA.

Since P (t) and Pm(t) are both self-adjoint operators and D(A) is dense in H, by
Theorem 3.2 we then get

‖P (t)− Pm(t)‖ = sup
z∈D(A)
‖z‖=1

∣∣ ((P (t)− Pm(t)
)
z, z
) ∣∣

≤Mt1−2αe−(2π(1−2α)dm)1/2

.

Now let

km = (2m+ 2) dimY.

Since n ≤ m + 1, the rank of Pm(t) is at most km, and we immediately see that
we have the bound σkm+1(P (t)) ≤ Mt1−2αe−η

√
m with η =

√
(2π(1− 2α)d. As the
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singular values are decreasing, we may rewrite this1 as

σj ≤ M̃t1−2αe−η̃
√
j−2 dimY

for j ≥ 4 dimY , with the modified constants M̃ = Me−η(
√

2+1/(2 dimY )−1) and η̃ =
η√

2 dimY
.

Remark 3.4. The theorem is stated for k ≥ 4 dimY since this is the maximal rank
of the approximant P1(t), which provides the first explicit information we have. As
the singular values are decreasing, it is of course possible to scale the constant M by
σ1/σ(4 dimY ) and show exponential square-root decay for k ≥ 1. However, the bound
is then also that much worse in the given interval.

Remark 3.5. In the current approach, the factor t1−2α is desired when t is small,
but this also means that the bound deteriorates when t → ∞. This holds also in
the exponentially stable case, i.e., when ω < 0, because we cannot bound e2ω<(z)

uniformly on (0, t/2) by e−Mt for any positive M . However, when ω < 0 the solution
to the DLE tends to the solution of the corresponding algebraic Lyapunov equation
(ALE) 0 = A∗P + PA+ C∗C as t→∞; see, e.g., [21, section 2.3] (also for the more
general Riccati case). If ω < 0 and t ∈ [0, T ], where T is very large the bound in
Theorem 3.3 is therefore overly pessimistic, and we might instead start from the ALE
decay results and consider the small perturbation arising from the difference between
the ALE and DLE solutions. The ALE case was considered in [29], which uses the
sinc quadrature theory for the infinite interval (0,∞) [25, Theorem 3.9] applied to our
function F (z). (See also [37, Example 4.2.10]). The new integration interval leads
to a different choice of transformation φt, for which it is straightforward to gainfully
utilize the e2ω<(z) term. It results in the exponential square-root decay∣∣∣∣ ∫ ∞

0

F (z) dz − h
n∑

k=−m

F (ekh)ekh
∣∣∣∣ ≤Me−

√
2πδαm.

By (3.3) we have ∣∣∣∣ ∫ T

0

F (z) dz −
∫ ∞

0

F (z) dz

∣∣∣∣ ≤ MT−2αe−2ωT

2ω
,

and we thus get exponential square-root decay except for a small constant term, if T
is large. We note, however, that if T is large it might be more worthwhile to consider
the ALE with T =∞ directly, rather than the DLE.

Remark 3.6. Similar results are expected to hold in the nonautonomous case,
i.e., when A, B, and C may depend on t. If the operators A(t) all generate an-
alytic semigroups with the same domain D(A(t)) = D and the map t 7→ A(t) :
[0, T ] → L(D,H) is sufficiently nice (Hölder continuous with D having the graph
norm) then there is a evolution system U(t, s) satisfying d

dtU(t, s) = A(t)U(t, s) and

‖(ωI −A(t))αU(t, s)x‖ ≤ M
(t−s)α for x ∈ D. See, e.g., [30, section 5.6]. It can then be

1Let k = a + bm with b > 0. For j = k + 1, . . . , k + 1 + b we have σj ≤ σk+1 ≤ Me−η
√
m ≤

Me−η̃
√
k−a ≤ Me−η̃

√
j−ae−η̃

(√
k−a−

√
j−a
)

with η̃ = η/
√
b. Now,

√
k − a −

√
j − a ≥

√
k − a −√

k + 1 + b− a =
√
bm −

√
b(m+ 1) + 1. The latter function is decreasing with m, so we get

σj ≤Meη
(√

2+1/b−1
)
e−η̃
√
j−a.
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verified by differentiation that the function

P (t) =

∫ t

0

U(t, s)∗C(s)∗C(s)U(t, s) ds

solves the DLE Ṗ (t) = A(t)∗P (t) + P (t)A(t) + C(t)∗C(t), P (0) = 0. We can
thus follow the same program as in the autonomous case if we can guarantee that
C(s)(ωI −A(t))−α ∈ L(H,Y ) with α < 1/2 for s near t, since then ‖C(s)U(t, s)x‖ ≤
M

(t−s)α . A simple example of when such a condition would hold is when the time

dependency is of the form A(t) = κ(t)Ã, C(t) = λ(t)C̃, where Ã and C̃ are fixed
operators and the functions κ, λ are continuous and bounded away from zero. Then
it is clear that if Ã and C̃ satisfy the assumptions for the autonomous case, the above
condition is also fulfilled.

A nonzero operator G makes the situation more delicate. If G is a finite-rank
operator, then the above result is essentially just shifted by rank(G). For consistency,
we formulate this in terms of the output space Z.

Theorem 3.7. Let Assumptions 2.2, 2.4, and 2.5 be satisfied, with the output
spaces Y and Z both having finite nonzero dimension. Then the singular values of the
solution P to the DLE (3.1) satisfy

σk(P (t)) ≤Mt1−2αe−η
√
k−2 dimY−dimZ

for k ≥ max(1, 4 dimY + dimZ), where M and η are positive constants independent
of t but dependent on α.

Proof. This follows by the same procedure as in the proof of Theorem 3.3 after
changing the definition of Pm to

Pm = etA
∗
G∗GetA + h

n∑
k=−m

wkezkA
∗
C∗CezkA.

In this case, km = dimZ + (2m+ 2) dimY .

As an alternative proof, we may make use of the well-known Weyl’s inequality
(also known as the Ky Fan inequality): Let F1 and F2 be two compact operators on
H with singular values {σ1

k}∞k=1 and {σ2
k}∞k=1, respectively. Denote the singular values

of F1 + F2 by {σk}∞k=1. Then σj+k−1 ≤ σ1
j + σ2

k for all positive integers j and k [14].

If dimZ < ∞, then G and etA
∗
G∗GetA are both compact operators whose singular

values are zero except for the first dimZ ones. The operator
∫ t

0
esA

∗
C∗CesA ds is also

compact, since it is the limit of a sequence of finite-rank operators (see the first part
of the proof for Theorem 3.3). Hence Weyl’s inequality applies, which shifts the start
of the exponential decay by dimZ.

Finally, we consider the case where G is a general operator. To handle the term
etA

∗
G∗GetA we then have to impose stricter requirements on the semigroup etA and,

by extension, its generator A. Alternatively, we may require that the singular values
of G decay sufficiently fast.

Theorem 3.8. Let Assumptions 2.2, 2.4, and 2.5 be satisfied, with the output
space Y having finite dimension dimY ≥ 1 and dimZ =∞. If the singular values of

the solution operator etA decay exponentially in the square root, σk(etA) ≤ M̃e−η̃(t)
√
k,
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then the singular values of the solution P to the DLE (3.1) satisfy

σk(P (t)) ≤M max(1, t1−2α)e−
1
2 min(η,2η̃(t))

√
k+1−2 dimY

for k ≥ 6 dimY − 1, where M and η are positive constants independent of t but

dependent on α. If, instead, σk(G) ≤ M̃e−η̃
√
k, then the same bound holds but without

the time dependence in the exponent.

Proof. The extra assumption on etA in particular implies that etA is compact, and
since G is bounded, the operator etA

∗
G∗GetA is also compact. Further, the singular

values clearly satisfy σk(etA
∗
G∗GetA) ≤ M̂e−2η̃

√
k for some constant M̂ . We may

therefore apply Weyl’s inequality as in the paragraph after the proof of Theorem 3.7.
By Theorem 3.3 this directly yields

σ2k−2 dimY−1(P (t)) = σk+(k−2 dimY )−1(P (t))

≤Mt1−2αe−η
√
k−2 dimY + M̂e−2η̃(t)

√
k−2 dimY

≤ 2 max
(
Mt1−2α, M̂

)
e−min(η,2η̃(t))

√
k−2 dimY ,

and thus

σj(P (t)) ≤ 2 max
(
Mt1−2α, M̂

)
e−

1
2 min(η,2η̃(t))

√
j+1−2 dimY

for all j ≥ 6 dimY −1. For the second case, we note that the assumption implies that

σk

(
etA

∗
G∗GetA

)
≤ M̂e−2η̃

√
k

with a different constant M̂ , due to the exponential boundedness of etA. We may
thus apply Weyl’s inequality in exactly the same way.

Remark 3.9. When A is diagonalizable, the assumption on etA obviously means
that the eigenvalues of A should go to −∞ like the negative square root. This as-
sumption is satisfied in many concrete applications. As an example, the Laplacian on
Ω ⊂ Rd with Dirichlet or Neumann boundary conditions has eigenvalues λk(A) that
decrease as λk(A) = O(−k2/d) by Weyl’s law; see, e.g., [12, Chapter VI]. Hence the
assumption is satisfied for such problems of up to dimension 4.

4. Riccati equations. As in [29], we may extend the Lyapunov results to the
Riccati case by using a factorization into output and input-output maps. For this,
we will employ the framework of well-posed systems advocated by Salamon [33] and
Staffans [35]; see also [27, 40]. As in section 3 we first consider the case of a zero
initial condition, then extend this to the finite-rank case and finally to the case of a
general G but with extra requirements on A.

Theorem 4.1. Let Assumptions 2.2 to 2.5 be satisfied, with the output spaces Y
and Z having finite nonzero dimension. Then if G = 0, the singular values of the
solution P to the DRE (2.1) satisfy

σk(P (t)) ≤Mt1−2αe−η
√
k−2 dimY

for k ≥ 4 dimY . If G 6= 0 but dimZ <∞ we instead get

σk(P (t)) ≤Mt1−2αe−η
√
k−2 dimY−dimZ
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for k ≥ 4 dimY + dimZ. If dimZ =∞ and σk(etA) ≤ M̃e−η̃(t)
√
k, then

σk(P (t)) ≤M max
(
1, t1−2α

)
e−

1
2 min(η,2η̃(t))

√
k+1−2 dimY

for k ≥ 6 dimY − 1. Finally, if dimZ = ∞ and σk(G) ≤ M̃e−η̃
√
k, then the last

bound still holds, but without the time dependency in the exponent. In all the cases
above, M and η are positive constants independent of t but dependent on α.

Remark 4.2. As in Remark 3.4, we can shift the decay to start at k = 1 by
increasing the constant M , at the expense of a worse bound in the interval given
above.

Proof. Let the output and input-output mappings Ct and Dt be given by

(Ctx0)(s) = CesAx0 and (Dtu)(s) =

∫ s

0

Ce(s−τ)ABu(τ) dτ .

By [35, Theorem 5.7.3], these mappings satisfy Ct ∈ L(H,L2([0, t], Y )) and Dt ∈
L(L2([0, t], U), L2([0, t], Y )), due to Assumptions 2.3 and 2.4. When G = 0 we can
then directly apply the result of Salamon [33, Theorem 5.1], which (in our notation)
states that

P (t) = C∗t
(
I +DtD∗t

)−1Ct.

Here, I denotes the identity operator on L2([0, t], Y ), and the inverse of I+DtD∗t exists
as a bounded self-adjoint operator by the Lax–Milgram lemma. A straightforward
calculation shows that C∗t is given by C∗t u =

∫ t
0

esA
∗
C∗u(s) ds, and we get

C∗t Ctx0 =

∫ t

0

esA
∗
C∗CesAx0 ds.

Thus, in fact, for x, y ∈ D(A) we have (C∗t Ctx, y) = F (t) with F defined by (3.2).
Hence the singular values of C∗t Ct decay exponentially in the square root, by exactly
the same reasoning as in the proof of Theorem 3.3. Multiplying C∗t Ct by the bounded
operator (I + DD∗)−1 only scales the singular values by the factor

∥∥(I +DD∗)−1
∥∥,

so we have thus proven the first assertion.
The argument in [33, Theorem 5.1] may be extended also to the more general

case that G 6= 0. We instead get

P (t) = C∗G,tCG,t + C∗t Ct
−
(
C∗G,tDG,t + C∗tDt

)(
I +D∗tDt +D∗G,tDG,t

)−1(D∗G,tCG,t +D∗t Ct
)
,

where

CG,tx0 = GetAx0 and DG,tu = G lim
s→t

∫ s

0

e(s−τ)ABu(τ) dτ

are the “final-state” versions of the C and D operators. By [35, Theorem 5.7.3] and

[35, Theorem A.3.7(ii)], the input-output operator t 7→
∫ t

0
Ge(t−s)ABu(s) ds maps

u ∈ L2([0, t], U) into C([0, t], Z) under Assumption 2.5, and DG,t is therefore well-
defined.
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Recall that the problem is stated on t ∈ [0, T ]. For any such t, we define the
product space Xt = L2([0, t], Y )× Z with the induced topology∥∥∥∥[yz

]∥∥∥∥2

Xt

= ‖y‖2L2([0,t],Y ) + ‖z‖2Z .

Further let the operators C̃t : H → Xt and D̃t : L2([0, t], U)→ Xt be defined by

C̃t =

[
Ct
CG,t

]
and D̃t =

[
Dt
DG,t

]
.

Then clearly C̃t and D̃t are linear and bounded with adjoints C̃∗t : Xt → H and
D̃∗t : Xt → L2([0, t], U) given by

C̃∗t =
[
C∗t C∗G,t

]
and D̃∗t =

[
D∗t D∗G,t

]
.

It follows that we can factorize the above expression for P (t) as

P (t) = C̃∗t
(
I + D̃tD̃∗t

)−1C̃t.

Hence, the singular value decay of P (t) is the same as that of C̃∗t C̃t ∈ L(H), i.e., of
C∗t Ct + C∗G,tCG,t = C∗t Ct + etA

∗
G∗GetA. Applying Weyl’s inequality with either the

assumption that dimZ <∞ or that the singular values of etA or G decay sufficiently
fast yields the second, third, and fourth assertions, as in the proofs of Theorems 3.7
and 3.8.

Remark 4.3. The above theorem extends to the case of a more general cost func-
tional with a coercive weighting term

[
Q N
N∗ R

]
in much the same way as [29]. Since

N = 0 in most practical applications and Q and R may be included in C and B,
respectively, we choose to omit this from the theorem and proof in order to simplify
the notation.

We note that while we have only shown that the given assumptions are suffi-
cient for fast decay of the singular values, we do not claim that they are necessary
conditions. Nevertheless, violating one of the assumptions generally either leads to
a not well-defined problem or slow decay. See, e.g., [29] for a number of examples
in the algebraic setting. As an additional example, consider the advection equation
d
dtx(t, ξ) = d

dξx(t, ξ) on ξ ∈ (0,∞), with x(0, ξ) = x0(ξ). The solution is given by

x(t, ξ) = x0(t), i.e., it simply shifts the initial condition to the left. If the output
operator C is the trace of x at 0, the output map is given by Ctx0 = x0(·). This
means that

‖Ctx0‖2L2([0,t],Y ) = ‖x0‖2L2([0,t],H) ,

and Ct is therefore a partial isometry for any t > 0. Since H is infinite dimensional,
Ct has infinitely many singular values that are equal to 1. The solution to the cor-
responding DLE therefore exhibits no decay of its singular values at all. The main
problem here is the lack of analyticity of the operator d

dξ (cf. [22, section 8.7A]).
On the other hand, analyticity is sometimes not strictly necessary when B and

C are bounded operators. This is demonstrated for the algebraic case in [13], which
shows that the solution is nuclear. That means that

∑∞
k=1 σk(P ) < ∞, i.e., the
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singular values decay to zero at least as fast as 1/k, but not necessarily as fast as

e−γ
√
k. (These results extend to the differential case.)

5. Numerical experiments. To demonstrate the applicability of the bounds
proposed in Theorems 3.3, 3.7, 3.8, and 4.1 we have performed a few numerical ex-
periments. In all cases, we consider DRE/DLEs arising from LQR problems with the
state and output equations given by

ẋ = Ax+Bu, x(0) = x0.(5.1)

y = Cx.(5.2)

The solution P to the DRE associated with the operators A, B, and C yields the
optimal input function uopt in feedback form: uopt(t) = −B∗P (T − t)x(t). It is
optimal in the sense that it minimizes the cost functional

J(u) =

∫ T

0

‖y‖2Y + ‖u‖2U dt+ ‖Gx(T )‖2Z .

The aim is thus to drive the output y to zero while being mindful of the cost ‖u‖2
of doing so. In the extended case mentioned in Remark 4.3, the weighting factors
scale the relative costs of y and u, respectively. When B = 0, the solution to the
corresponding DLE yields the observability Gramian, an indicator of which states x
that can be detected by using only the output y.

In all the following examples we consider the domain Ω = [0, 1]2 to be the unit
square, with boundary Γ. We further let the state space be H = L2(Ω) except where
otherwise noted. We choose A = ∆ : D(A) ⊂ H → H to be the Laplacian. Since we
will vary the boundary conditions, its domain will change as well. We can, however,
always consider it to be generated by the inner product a(u, v) =

∫
Ω
∇u · ∇v, where

u, v ∈ V = D((−A)1/2). In the case of homogeneous Dirichlet boundary conditions,
we have D(A) = H2 ∩ H1

0 (Ω) and V = H1
0 (Ω). We note that Assumption 2.2 is

satisfied, with the region of analyticity being the entire right half-plane.
Since we cannot investigate the infinite-dimensional case in finite precision arith-

metic, a discretization of the equation is required. For the spatial discretization, we
have used the finite element method based on the inner product a. For a given mesh
size h, we get the finite element space Vh ⊂ V ⊂ H and the approximate solution Ph
is an operator from Vh to Vh. We may, however, extend it to an operator on H by
forming IhPhPh, where Ih : Vh → H denotes the identity operator and Ph : H → Vh
is the a-orthogonal projection onto the finite element space. For a detailed account
of the resulting matrix-valued equations, see, e.g., [26, section 5]. We generate the
respective matrices here by using the library FreeFem++ [17] with P2 conforming
finite elements unless otherwise noted.

Further, since the discretized DLE/DREs are matrix valued and their solutions
are typically dense, it is not feasible to simply transform these into vector-valued
ODEs and solve them directly. We use instead the MATLAB package DREsplit2 de-
veloped by the author to compute accurate low-rank approximations to the solutions.
The reported singular values are thus not exact, but the integration parameters were
chosen in such a way that further refining the temporal discretizations has a negligible
effect on the end results. In particular, we used the second-order Strang splitting with
256 time steps. This requires the computation of many matrix exponential actions,

2Available from the author via email on request, or from www.tonystillfjord.net.

www.tonystillfjord.net
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Fig. 2. The singular values of the solutions computed in Example 5.1 at the final time T = 0.1.
They increase monotonically, and thus the lowermost line corresponds to N = 9 while the topmost
corresponds to N = 65025.

and for this a basic block Krylov subspace method with residual norm tolerance 10−4

was employed. The relative tolerance for the low-rank approximation was set to the
roundoff error level. For further details on the use of splitting schemes in this context,
see, e.g., [39] or [38].

With this said, we want to note that the reported results also provide some insight
into how the discretized equations converge to their infinite-dimensional counterparts.

Example 5.1. We consider first the bounded Lyapunov case by taking the input
operator B = 0 and letting the output be the mean of the solution. More specifically,
we take Y = R and set C : H → Y , Cx =

∫
Ω
x. Then clearly ‖Cx‖R ≤ ‖x‖H , since Ω

is the unit square. We thus have β = 0 and α = 0. Further setting G = 0 implies that
Assumptions 2.3 to 2.5 are satisfied. To complete the specification of A, we choose
homogeneous Dirichlet boundary conditions.

We computed the singular values for a number of different spatial discretizations,
starting with a grid that has N = 9 internal nodes and refining this 6 times. Each
refinement roughly halves the mesh size and thus roughly quadruples the number of
nodes, leading to meshes with N = 9, 49, 225, 961, 3969, 16129, and 65025 internal
nodes, respectively. Figure 2 shows the computed singular values of the solutions
(the L(H)-extended operators, not the matrices) for different spatial discretizations,
at the final time T = 0.1. The curves are ordered in size from bottom to top, i.e.,
the lowermost curve corresponds to the N = 9 discretization, while the topmost
corresponds to the N = 65025 discretization. We observe that while the initial decay
is very much exponential in nature, when we refine the discretization the decay worsens
and tends to the exponential square-root bound. This is precisely the same behavior
as seen in the algebraic case in, e.g., [16].
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Fig. 3. The singular values of the solutions computed in Example 5.2 at the final time T = 0.1.
They increase monotonically, and thus the lowermost line corresponds to N = 20 while the topmost
corresponds to N = 65792.

Example 5.2. In the second example, we change the boundary conditions of A
to be homogeneous Dirichlet on the left edge ΓL and homogeneous Neumann on the
top and bottom edges ΓT , ΓB . On the right edge, ΓR, we apply a nonhomogeneous
Neumann boundary condition, through which we control the system. That is, we
set U = R and define B : U → D(A∗)′ by Bu = −(AN1)u, where the function
1 ∈ L2(ΓR) is constant equal to 1 everywhere and N : L2(ΓR) → H3/2(Ω) denotes
the Neumann operator implicitly defined by Nv = w if Aw = 0 in Ω, ∂w

∂ν |ΓR = v,

w|ΓL = 0, and ∂w
∂ν |ΓT∩ΓB = 0. For further details on this construction, see, e.g., [21,

section 3]. That N maps into H3/2(Ω) follows by [24, Thm. 8.3] and shows that
(−A)−βB ∈ L(U,H) for β = 1/4 + ε, ε > 0.

We note that we could equally well take U = L2(Γ) in the continuous setting and
let the input u vary along the whole edge. However, for the numerics we would then
have to also discretize this function, leading to one more layer of complexity.

As the output, we again use the mean of the solution over the whole domain Ω,
meaning that α = 0. We discretize the system in the same way as in Example 5.1,
but because of the three Neumann edges we now have a slightly higher number of
degrees of freedom for each level of discretization. The matrices are in this case of
size N = 20, 72, 272, 1056, 4160, 16512, and 65792, respectively.

Figure 3 shows the computed singular values of the solutions at the final time
T = 0.1. The curves are again ordered in size from coarse (bottom) to fine (top) dis-
cretizations. We note that these results are quite similar to the results in Figure 2, i.e.,
the input operator does not make the situation worse, as predicted by Theorem 4.1.

We have additionally plotted the largest singular value of the finest discretized
problem as a function of time in Figure 4. We note that it grows roughly as t1,
corresponding well to the factor t1−2α predicted by Theorem 4.1.
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Fig. 4. The largest singular value of the solution with N = 65792 computed in Example 5.2,
plotted over time.

Example 5.3. Now consider the same setting as in the previous example, but with
an unbounded output as well. More precisely, we take Y = R and define C as the
integral of the boundary trace over ΓT ∩ ΓB :

Cx =

∫
ΓT∩ΓB

x|Γ(s) ds.

By [24, Theorem 8.3], the map x 7→ x|Γ belongs to L(H1/2(Ω), L2(Γ)) and hence the
map CA−α is bounded for α = 1/4 + ε, ε > 0.

With the same discretizations as in Example 5.2, the behavior of the singular
values is similar to when C was bounded. The decay is, however, noticeably slower,
as shown in Figure 5. The effect of a larger α can also clearly be seen when plotting
the singular values for a specific discretization over time. Figure 6 again shows the
largest singular value for the finest discretization. We note that in comparison to
Figure 4, the increase is now close to t1/2 rather than t1. Since α = 1/4, this is in
good agreement with the factor t1−2α predicted by Theorem 4.1.

Example 5.4. Let us now consider a situation when the main assumptions are not
satisfied. In particular, let us take the same setup as in Example 5.3 except for the
output operator. We now instead take the trace of the normal derivative:

Cx =

∫
ΓT∩ΓB

(
∂x

∂ν

)
|Γ

(s) ds.

Again by [24, Theorem 8.3], the map x 7→
(
∂x
∂ν

)
|Γ

belongs to L(H3/2(Ω), L2(Γ)) and

hence the map CA−α is bounded for α = 3/4+ε, ε > 0. Since α > 1/2, Assumption 2.4
is not satisfied, and we can in fact not show the existence of a solution P ∈ L(H).
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Fig. 5. The singular values of the solutions computed in Example 5.3 at the final time T = 0.1.
They increase monotonically, and thus the lowermost line corresponds to N = 20 while the topmost
corresponds to N = 65792.
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Fig. 6. The largest singular value of the solution with N = 65792 computed in Example 5.3,
plotted over time.
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Fig. 7. The singular values of the solutions computed in Example 5.4 at the final time T = 0.1.
They increase (roughly) monotonically, and thus the lowermost line corresponds to N = 20 while the
topmost corresponds to N = 65792. Because the underlying problem is not well-posed, the discretized
solutions increase without bound.

This is reflected in the results shown in Figure 7. We have discretized the prob-
lem in the same way as previously, and we plot the singular values for the different
discretizations like in Figures 2 and 3. In contrast to the previous results, we now
see that the singular values keep increasing as we refine the discretization, demon-
strating that the singular values of the exact solution are infinite. Thus, while the
singular values of a single discretized matrix-valued equation seem to decay expo-
nentially, since the underlying problem is not well-posed these “approximations” are
nevertheless worthless.

Example 5.5. The situation in the previous example holds when we use H =
L2(Ω). By instead selecting a smaller state space H, we decrease the value of α. With
H = {x ∈ H1(Ω) ; x|ΓL = 0} and the same operator C we again get α = 1/4 + ε.

Since we simultaneously increase β by 1/2, we set B = 0 in this example to comply
with Assumption 2.3.

We note that we now consider the operator A as restricted to H instead of an
operator on L2(Ω). It still generates an analytic semigroup and Assumption 2.2 is
satisfied. Since the finite element discretization of the problem is no longer based on
a(u, v) but on the corresponding inner product defined on H1, the resulting problem
is similar to a biharmonic equation. This imposes extra regularity requirements on
the standard conforming finite element spaces, requiring a high number of nodes [11,
p. 286]. In order to avoid this, in this example we employ instead the nonconforming
Morley elements [28, 11].

The results are shown in Figure 8. We see that since α is now again less than
1/2, the singular values behave much like in the previous examples.
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Fig. 8. The singular values of the solutions computed in Example 5.5 at the final time T = 0.1.
They increase monotonically, and thus the lowermost line corresponds to N = 20 while the topmost
corresponds to N = 65792.

6. Conclusions. We have proved bounds for the singular values σk of the so-

lutions to DLEs and DREs of the form σk ≤ Me−γ
√
k, extending previous results

on algebraic equations to the differential case. This is important, since utilizing the
property of low numerical rank is a critical feature in numerical methods for these
problems in the large-scale setting. If low numerical rank, i.e., a sufficiently rapid
decay of the singular values, cannot be guaranteed, these methods never finish, or fail
outright. The current work is thus a step on the way to provide practical criteria for
when this is to be expected. We say “a step on the way” because while we have given
conditions for when exponential square-root decay is to be expected, we have not
indicated how large the constant multiplier in the bound can be. A large value could
mean that the numerical rank is too large to be useful in a practical application, even

though the decay is O(e−γ
√
k). However, the size of this constant depends strongly on

the properties of the operators A and C, and providing a generally meaningful bound
is difficult with current techniques. We therefore leave this question open for future
research, but note that the constants arising in our numerical experiments are all of
moderate size.

A further interesting unexplored question is how the singular values of the so-
lutions to the spatially discretized matrix-valued problems relate to those of the
operator-valued solutions. As noted in the numerical experiments, one often observes
exponential decay in the discretized case. When the discretization is refined, the
decay rate deteriorates and eventually tends to the exponential square-root bound.
The form of this decrease is, however, unclear. While it can be argued that the dis-
cretized equations are only steps on the way towards the nondiscretized goal (and
the author does argue thus), in practical computations we are of course always in the
matrix-valued situation. Analyzing also this case and providing a connection between
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the decay rate and the discretization level is therefore both highly interesting and
important, but clearly requires a different approach.
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[26] A. Målqvist, A. Persson, and T. Stillfjord, Multiscale differential Riccati equations for
linear quadratic regulator problems, SIAM J. Sci. Comput., 40 (2018), pp. A2406–A2426.

[27] K. M. Mikkola, Infinite-Dimensional Linear Systems, Optimal Control and Algebraic Riccati
Equations, Dissertation, Helsinki University of Technology, Helsinki, Finland, 2002, http:
//lib.tkk.fi/Diss/2002/isbn9512260794/.

[28] L. S. D. Morley, The triangular equilibrium element in the solution of plate bending problems,
Aeronaut. Quart., 19 (1968), pp. 149–169.

[29] M. Opmeer, Decay of singular values of the Gramians of infinite-dimensional systems, in
Proceedings 2015 European Control Conference (ECC), Linz, Austria, IEEE, Piscataway,
NJ, 2015, pp. 1183–1188, https://doi.org/10.1109/ECC.2015.7330700.

[30] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,
Appl. Math. Sci. 44, Springer, New York, 1983.

[31] T. Penzl, Eigenvalue decay bounds for solutions of Lyapunov equations: The symmetric case,
Systems Contol Lett., 40 (2000), pp. 139–144, https://doi.org/10.1016/S0167-6911(00)
00010-4.

[32] I. R. Petersen, V. A. Ugrinovskii, and A. V. Savkin, Robust Control Design Using H∞

Methods, Springer, London, 2000.
[33] D. Salamon, Infinite-dimensional linear systems with unbounded control and observation: A

functional analytic approach, Trans. Amer. Math. Soc., 300 (1987), pp. 383–431, https:
//doi.org/10.2307/2000351.

[34] D. C. Sorensen and Y. Zhou, Bounds on Eigenvalue Decay Rates and Sensitivity of Solutions
to Lyapunov Equations, Technical report TR02-07, Rice University, Houston, TX, 2002,
https://scholarship.rice.edu/handle/1911/101987.

[35] O. Staffans, Well-Posed Linear Systems, Encyclopedia Math. Appl. 103, Cambridge Univer-
sity Press, Cambridge, 2005, https://doi.org/10.1017/CBO9780511543197.

[36] F. Stenger, Integration Formulae Based on the Trapezoidal Formula, J. Inst. Math. Appl.,
12 (1973), pp. 103–114.

[37] F. Stenger, Numerical Methods Based on Sinc and Analytic Functions, Springer Ser. Comput.
Math. 20, Springer, New York, 1993, https://doi.org/10.1007/978-1-4612-2706-9.

[38] T. Stillfjord, Low-rank second-order splitting of large-scale differential Riccati equations,
IEEE Trans. Automat. Control, 60 (2015), pp. 2791–2796, https://doi.org/10.1109/TAC.
2015.2398889.

[39] T. Stillfjord, Adaptive high-order splitting schemes for large-scale differential Riccati
equations, Numer. Algorithms, 78 (2017), pp. 1129–1151, https://doi.org/10.1007/
s11075-017-0416-8.

[40] M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkhäuser
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